期刊文献+

基于CNN的高光谱影像空谱分类方法

Spatial-spectral Classification Method of Hyperspectral Image Based on CNN
下载PDF
导出
摘要 本文设计了一种改进的卷积神经网络(convolutional neural network,CNN)模型用于高光谱影像分类,该模型能够直接将高光谱影像数据立方体作为输入特征,不需要预先降维处理,且能够综合利用光谱和空间特征进行分类处理。实验结果表明,基于改进的CNN模型的高光谱影像分类方法比传统SVM、1D—CNN和PCA+CNN等方法的分类精度更高。 An improved convolutional neural network model is designed for hyperspectral image classification. The model can directly use hyperspectral image data cube as input feature, without dimensional reduction processing in advance. Besides, hyperspectral images can be classified by comprehensively using spectral and spatial features. Experiment resuhs show that the spatial-spectral classification method of hyperspectral image based on CNN can achieve higher classification accuracy than tradi- tional methods such as SVM, 1D-CNN, PCA + CNN, etc.
出处 《测绘科学与工程》 2017年第6期74-78,共5页 Geomatics Science and Engineering
关键词 高光谱影像 分类 卷积神经网络 空谱特征 hyperspectral image classification eonvolutional neural network spatial-spectral features
  • 相关文献

参考文献2

二级参考文献30

  • 1CAMPS-VALLS G, TUIA D L, BRUZZONE J. Atli-Benediktsson. Advances in hyperspectral image classification [J]. IEEE Signal Process, 2014, 21(4):45-54. 被引量:1
  • 2BIOUCAS-DIAS J, PLAZA A, CAMPS-VALLS G, et al.. Hyperspectral remote sensing data analysis and future challenges [J]. IEEE Remote Sens., 2013, 1(2):6-36. 被引量:1
  • 3BIOUCAS-DIAS J M, PLAZA A, DOBIGEON N, et al.. Hyperspectral unmixing overview:Geometrical, statistical, sparse regression-based approaches[J]. IEEE J. Sel. Topics Appl. Earth Observ., 2012, 5(2):354-379. 被引量:1
  • 4MAIRAL J, BACH F, PONCE J. Task-driven dictionary learning [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34(4):791-804. 被引量:1
  • 5IORDACHE M, BIOUCAS-DIAS J, PLAZA A. Total variation spatial regularization for sparse hyperspectral unmixing [J]. IEEE Trans. Geosci. Remote Sens., 2012, 50(11):4484-4502. 被引量:1
  • 6CHEN Y, NASRABADI N M, TRAN T P. Hyperspectral image classification using dictionary-based sparse representation [J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(10):3973-3985. 被引量:1
  • 7CHARLES A, OLSHAUSEN B, ROZELL C. Learning sparse codes for hyperspectral imagery [J]. IEEE Sel. Topics Signal Process, 2011, 5(5):963-978. 被引量:1
  • 8SOLTANI-FARANI A, RABIEE H R. When pixels team up:spatially weighted sparse coding for hyperspectral image classification[J]. IEEE Geosci. Remote Sens. Lett., 2015, 12(1):107-111. 被引量:1
  • 9TILTON J C. RHSEG User's Manual (version 1.47) [OL]. http://ipp.gsfc.nasa.gov/RHSEG, 2009. 被引量:1
  • 10TANG Z Q, FU G Y, YU X, et al.. A class-Oriented model for hyperspectral image classification through hierarchy-tree-based selection [C]. The 2nd International Sym. on Computer Vision in Remote Sens., Xiamen, P.R. China: CVRS, 2015, 2:1-4. 被引量:1

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部