期刊文献+

量子非马尔科夫特性的度量与调控 被引量:2

Quantification and manipulation of quantum non-Markovianity
下载PDF
导出
摘要 如何全面系统地认识和理解量子非马尔科夫特性是当前量子信息领域的一个热点问题,已经取得了一些重要的理论与实验研究进展.本文将主要介绍两种分别基于量子互信息与量子Fisher信息矩阵角度的非马尔科夫特性的刻画准则,并通过两个具体例子,讨论它们与已有度量之间的关系和层次结构.除此之外,本文利用量子控制方法,实现了对此量子特性的有效调控,将无记忆的马尔科夫过程转化为有记忆的非马尔科夫过程. The research of quantum non-Markovianity has rapidly developed and many important theoretical and experimental progresses have been made. In this work, we will mainly introduce two criteria to detect and quantify quantum non-Markovianity from the perspective of quantum mutual information and Fisher information matrix, respectively, and illustrate their basic features through two typical examples. The relationship between them and other approaches is elucidated,and a hierarchial aspect of quantum non-Markovianity is revealed. Furthermore, we adopt quantum control method to manipulate this quantum feather, and effectively modify the quantum Markovian dynamics to non-Markovian process.
作者 宋洪婷
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第11期1477-1483,共7页 Control Theory & Applications
基金 国家自然科学基金项目(11605284)资助~~
关键词 开放量子系统 量子非马尔科夫特性 量子信息 量子调控 open quantum systems quantum non-Markovianity quantum information quantum control
  • 相关文献

参考文献1

二级参考文献66

  • 1Dowling J P, Milbum G J. Quantum technology: The second quantum revolution. Philos Trans Royal Soc A: Math Phys Eng Sci, 2003, 361: 1655-1674. 被引量:1
  • 2Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foun- dations of Computer Science. Los Alamitos, CA: IEEE Press, 1994. 124--134. 被引量:1
  • 3Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70:1895-1899. 被引量:1
  • 4Mewes M O, Andrews M R, Kurn D M, et al. Output coupler for Bose- Einstein condensed atoms. Phys Rev Lett, 1997, 78:582-585. 被引量:1
  • 5Mabuchi H, Khaneja N. Principles and applications of control in quan- tum systems. Int J Robust Nonlin Control, 2005, 15:647-667. 被引量:1
  • 6Bouten L, van Handel R, James M R. An introduction to quantum filter- ing. SIAM J Control Optim, 2007, 46:2199-2241. 被引量:1
  • 7Dong D, Petersen I R. Quantum control theory and applications: A sur- vey. IET Control Theory Appl, 2010, 4: 2651-267!. 被引量:1
  • 8Brif C, Chakrabarti R, Rabitz H. Control of quantum phenomena: Past, present and future. New J Phys, 2010, 12:075008. 被引量:1
  • 9James M R, Kosut R L. Quantum Estimation and Control. In: Levine W S, ed. The Control Handbook, 2nd ed. Boca Raton, FL: CRC Press, 2010. 31-1-31-42. 被引量:1
  • 10Wiseman H M, Milbum G J. Quantum Measurement and Control. New York: Cambridge University Press, 2009. 被引量:1

共引文献2

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部