摘要
The optical and radiative properties of aerosols during a severe haze episode from 15 to 22 December 2016 over Beijing, Shijiazhuang, and Jiaozuo in the North China Plain were analyzed based on the ground-based and satellite data, meteorological observations, and atmospheric environmental monitoring data. The aerosol optical depth at 500 nm was 〈 0.30 and increased to 〉 1.4 as the haze pollution developed. The Angstr6m exponent was 〉 0.80 for most of the study period. The daily single-scattering albedo was 〉 0.85 over all of the North China Plain on the most polluted days and was 〉 0.97 on some particular days. The volumes of fine and coarse mode particles during the haze event were approximately 0.05-0.21 and 0.01-0.43 μm^3, respectively-that is, larger than those in the time without haze. The daily absorption aerosol optical depth was about 0.01-0.11 in Beijing, 0.01-0.13 in Shijiazhuang, and 0.01-0.04 in Jiaozuo, and the average absorption Angstrom exponent varied between 0.6 and 2.0. The aerosol radiative forcing at the bottom of the atmosphere varied from -23 to -227, -34 to -199, and -29 to -191 W m^-2 for the whole haze period, while the aerosol radiative forcing at the top of the atmosphere varied from -4 to -98, -10 to -51, and -21 to -143 W m^-2 in Beijing, Shijiazhuang, and Jiaozuo, respectively. Satellite observations showed that smoke, polluted dust, and polluted continental components of aerosols may aggravate air pollution during haze episodes. The analysis of the potential source contribution function and concentration-weighted trajectory showed that the contribu- tion from local emissions and pollutants transport from upstream areas were 190-450 and 100-410 btg m-3, respectively.
The optical and radiative properties of aerosols during a severe haze episode from 15 to 22 December 2016 over Beijing, Shijiazhuang, and Jiaozuo in the North China Plain were analyzed based on the ground-based and satellite data, meteorological observations, and atmospheric environmental monitoring data. The aerosol optical depth at 500 nm was 〈 0.30 and increased to 〉 1.4 as the haze pollution developed. The Angstr6m exponent was 〉 0.80 for most of the study period. The daily single-scattering albedo was 〉 0.85 over all of the North China Plain on the most polluted days and was 〉 0.97 on some particular days. The volumes of fine and coarse mode particles during the haze event were approximately 0.05-0.21 and 0.01-0.43 μm^3, respectively-that is, larger than those in the time without haze. The daily absorption aerosol optical depth was about 0.01-0.11 in Beijing, 0.01-0.13 in Shijiazhuang, and 0.01-0.04 in Jiaozuo, and the average absorption Angstrom exponent varied between 0.6 and 2.0. The aerosol radiative forcing at the bottom of the atmosphere varied from -23 to -227, -34 to -199, and -29 to -191 W m^-2 for the whole haze period, while the aerosol radiative forcing at the top of the atmosphere varied from -4 to -98, -10 to -51, and -21 to -143 W m^-2 in Beijing, Shijiazhuang, and Jiaozuo, respectively. Satellite observations showed that smoke, polluted dust, and polluted continental components of aerosols may aggravate air pollution during haze episodes. The analysis of the potential source contribution function and concentration-weighted trajectory showed that the contribu- tion from local emissions and pollutants transport from upstream areas were 190-450 and 100-410 btg m-3, respectively.
基金
Supported by the National Key R&D Program(2016YFC0203306 and 2016YFA0601901)
National Natural Science Foundation of China(41401403,41590874,and 41375153)
Key Technology R&D Program of Henan Province(162102310089)
Basic Research Project of Chinese Academy of Meteorological Sciences(2016Z001 and 2014R17)