期刊文献+

基于深度学习的多视窗SSD目标检测方法 被引量:83

Object detection method of multi-view SSD based on deep learning
下载PDF
导出
摘要 提出了一种基于深度学习的多视窗SSD(Single Shot multibox Detector)目标检测方法。首先阐述了经典SSD方法的模型与工作原理,并根据卷积感受野的概念和模型特征层与原始图像的映射关系,分析了各层级卷积感受野大小和特征层上默认框在原始图像上的映射区域尺寸,揭示了经典SSD方法在小目标检测上不足的原因。基于此,提出了一种多视窗SSD模型,阐述了其模型结构与工作原理,并通过106张小目标图像数据集测试,评估和对比了多视窗SSD方法与经典SSD方法在小目标检测上的物体检索能力与物体检测精度。结果表明:在置信度阈值为0.4的条件下,多视窗SSD方法的AF(Average F-measure)为0.729,m AP(mean Average Precision)为0.644,相比于经典SSD方法分别提高了0.169和0.131,验证了所提出算法的有效性。 The object detection method of multi-view Single Shot multibox Detector(SSD) based on deep learning was proposed. Firstly, the model and the working principle of classical SSD were expounded. According to the concept of convolution receptive field and the mapping relationship between the feature map and the original image, the sizes of covolution receptive field in different levels and the scales of the default boxes mapped to the original image were analyzed to find the reason why the classical SSD was not good at small object detection. Based on this, the multi-view SSD model was put forward, and the model architecture and its working principle were deeply expounded. Then, through the test in a dataset of 106 images for small object detection, the detection performance of multi-view SSD and classical SSD were evaluated and compared in object retrieval ability and object detection precision. Experimental results show that with the confidence threshold of 0.4, the multi-view SSD is 0.729 in Average F-measure(AF) and 0.644 in mean Average Precision(mAP), and has respectively raised 0.169 and 0.131 compared to the classical SSD in the two evaluation indexes, thus verifying the effectiveness of the proposed method.
出处 《红外与激光工程》 EI CSCD 北大核心 2018年第1期290-298,共9页 Infrared and Laser Engineering
基金 国家自然科学基金(61503394,61405248) 安徽省自然科学基金(1508085QF121)
关键词 深度学习 多视窗SSD 目标检测 小目标 deep learning multi-view SSD object detection small object
  • 相关文献

参考文献2

二级参考文献17

  • 1史泽林,王俊卿,黄莎白.复杂场景下的变形目标跟踪[J].光电工程,2005,32(1):31-35. 被引量:4
  • 2张效民,韩鹏,何柯,杨向锋.舰船辐射噪声信号自然测度计算分析[J].西北工业大学学报,2006,24(6):713-716. 被引量:2
  • 3宿丁,张启衡,陶冰洁,谢盛华.复杂背景下多源多目标图像的分形分割算法[J].红外与激光工程,2007,36(3):387-390. 被引量:16
  • 4Marivi T, Carlos L M, Jordi J M. A novel algorithm for ship detection in SAR imagery based on the wavelet transform [J]. IEEE Geoseienee And Remote Sensing Letters, 2005, 2(2): 201-205. 被引量:1
  • 5Cao Y L, Yang J Y, Ren M W, et al. Novel object detection method by probability velocity field [J]. Machine Vision Applications in Industrial Inspection VIII, 2000: 309-314. 被引量:1
  • 6Lee D S. Effective gaussian mixture learning for video background subtraction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832. 被引量:1
  • 7Bryan K R, Coco G. Detecting nonlinearity in run-up on a natural beach[J]. Nonlin Processes Geophys, 2007, 14: 385- 393. 被引量:1
  • 8Haykin S, Bakker R, Currie B W. Uncovering nonlinear dynamics: the case study of sea clutter [J]. IEEE Proceeding, 2002, 90(5): 860-881. 被引量:1
  • 9Grebogi C. Unstable periodic orbits and the dimensions of multifractal attractors[J]. Phys Rev A, 1988, 37(5): 1711-1724. 被引量:1
  • 10Takens F. Detecting strange attractors in turbulence [J]. Lecture Notes in Math, 1981, 898: 361-381. 被引量:1

共引文献105

同被引文献615

引证文献83

二级引证文献388

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部