期刊文献+

一种改进的民族人脸识别算法研究

An improved national face recognition algorithms
下载PDF
导出
摘要 针对非均匀光照和局部遮挡因素而干扰维吾尔族人脸识别效果,影响了维吾尔族人脸的特征提取效率和维吾尔族人脸识别正确率的问题,提出了基于全局特征和局部特征联合稀疏编码的维吾尔族人脸图像识别算法。首先,进行全局和局部的维吾尔族人脸特征图像的提取进而组成多簇字典;然后维吾尔族人脸图像的特征向量在其固有的特征字典上构建对应的联合编码,然后把不同特征的二维编码系数的方差进行最小化模式,以便使维吾尔族人脸图像的全局特征和局部特征的表现出固有的相似性,并且通过构造不一样的维吾尔族人脸图像特征编码系数和权不同距离来表征其图像特征出贡献的大小;最后根据整体的编码差异来判别其维吾尔族人脸图像的全局特征和局部特性的表现来辨认最终结果。通过实验表明,本文算法有效的提高了在非均匀光照和局部遮挡下维吾尔族人脸图像时的识别效果,在非均匀光照和局部遮挡下的识别率分别达到了95%和90%以上,达到了较好的鲁棒性和实时性。 For non-uniform illumination and partial occlusion factors interfering Uygur recognitioneffect,affecting the problem Uyghur face recognition feature extraction efficiency and accuracy of theUighur proposed based on global features and local features combined with sparse coding Uyghur faceimage recognition algorithms. First, extract the global and local Uyghur face features an imagecomposition further multibank dictionary; then Uyghur face image feature vector construct correspondingjointly encoded in its inherent characteristics in the dictionary,then the different characteristics of thetwo-dimensional coding coefficient global features variance minimized mode,so that Uyghur face imageand the local feature exhibits inherent similarities,and by constructing different Uyghur face imagefeature coding coefficients and different from the right to characterize its image features a the size of thecontribution; Finally,according to the overall performance of its coding difference discriminates Uyghurface image global features and local characteristics to identify the final result. Experiments show that thealgorithm effectively improve the recognition results in non-uniform illumination and partial occlusion under Uyghur face image recognition rate under non-uniform illumination and partial occlusion,respectively,more than 95% and 90%,reaching robust and real-time.
出处 《电子设计工程》 2018年第2期50-55,60,共7页 Electronic Design Engineering
基金 国家自然科学基金(61462082)
关键词 非均匀光照 局部遮挡 维吾尔族人脸 稀疏编码 non-uniform illumination partial occlusion Uygur face sparse coding
  • 相关文献

参考文献10

二级参考文献166

  • 1刘嘉勇,袁新峰.一种基于色阶偏差的皮肤检测技术研究[J].四川大学学报(工程科学版),2005,37(4):95-99. 被引量:3
  • 2Viola P, Jones M.Rapid object detection using a boosted cascade of simple features[C]//Proceedings of IEEE Conf Computer Vision and Pattern Recognition,2001,1: 511-518. 被引量:1
  • 3Phillips P J,Moon H, Syed A, et al.The FERET evalua- tion methodology for face-recognition algorithms[J]. IEEE Trans on Pattern Analysis and Machine InteUi- gence, 2000,22 (10) : 1090-1104. 被引量:1
  • 4Miao Jun,Yin Baocai,Wang Kongqiao,et al.A hierarchi- cal multiscale and multiangle system for human face detection in a complex background using gravity- center template[J].Pattern Recognition, 1999, 32 (7) : 1237-1248. 被引量:1
  • 5Zakaria M F, Ibrahim H, Suandi S A.A review: image compensation techniques[C]//2010 2nd International Con-ference on Computer Engineering and Technology, 2010,7 : 404-408. 被引量:1
  • 6金小贤,李卫军,陈旭,等.一种基于视觉特性的仿生幽像增强算法[J].汁算机辅助设汁与图形学学报,2010,22(3):534-537. 被引量:1
  • 7闪萨雷斯.数字图像(MATLAB版)[M].阮秋琦,泽.北京:电子工业出版社,2005. 被引量:1
  • 8SonkaM,HlavacV,BoyleR.图像处理、分析与机器视觉[M].第3版.艾海舟,苏延超,译.北京:清华大学出版社,2011. 被引量:4
  • 9Li Xiaoh, Ruan Qiuqi, Ruan Chengxiong. Facial expression recognition with local Gabor filters[ C ]//2010 IEEE 10th International Conference on Signal Processing ( ICSP 2010) ,Oct 24,2010 - Oct 28,2010. Bei- jing,China:1013 - 1016. 被引量:1
  • 10Liu Xiaoshan, Du Minghui, Jin Lianwen. Face features extraction based on multi-scale LBP[ C]//2010 2nd International Conference on Signal Processing Systems ( ICSPS ), July 5 - 7,2010. Dalian, China: 438 -441. 被引量:1

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部