摘要
在机器人液压驱动控制中,传统机械阀结构复杂,体积较大,故基于铁磁流体的超顺磁性质,在机器人液压驱动的基础上提出了新型液压驱动控制方法,即使用铁磁流体对传统液压系统中的液压流质进行改良,外加磁场直接控制高压液流的流向,实现系统压力的换向。在铁磁流体动力学(Ferro Hydro Dynamics,FHD)的基础上建立了喷射在空气介质中的铁磁流体在外磁场作用下流动的数学模型,并利用二次开发的Fluent软件建立了气液两相的欧拉(Eulerian)模型,模拟了在不同磁场强度下铁磁流体液流的偏移及分散等动力学行为。结果表明,在0.08 T磁场作用下,当流出高度为30 mm时,液流的偏移量为1.1 mm,并通过实验验证了模型的正确性。在新型铁磁流体液压驱动系统中,高压液流的激励由磁场提供,不需运动部件。该方案具有结构紧凑简单、施加激励参数易调节、响应迅速等优点。
In a hydraulic drive control system,the structural design of traditional mechanical valves is complex and the volume is large. According to the superparamagnetism of ferrofluid,a novel hydraulic driver control method is presented based on the robot hydraulic drive control system. The magnetic field is directly added to the traditional hydraulic fluid modified by the ferrofluid,and the pressure of this hydraulic driver system achieves the dynamic deflection. A mathematical model of ferrofluid flowing in the air field under the magnetic field is established based on the Ferro Hydro Dynamics( FHD). A model of Eulerian is presented to describe the ferrofluid jetting in the air under different magnetic flux densities with the secondary development of the software Fluent. Numerical simulations are performed to obtain velocity distributions and the dispersion behavior. The result shows that when the outlet height is 30 mm,the offset of liquid flow is 1. 1 mm under the magnetic field of 0. 08 T. Then the correctness of the model is verified by experiments. In the new ferrofluid hydraulic drive system,the high-pressure liquid flow is excited by the magnetic field without moving parts. This method has the advantages of simple and compact structure,easy adjustment of applied excitation parameters and quick response.
出处
《液压与气动》
北大核心
2018年第2期68-73,共6页
Chinese Hydraulics & Pneumatics
关键词
铁磁流体
液压驱动
铁磁流体力学
磁力
ferrofluid
hydraulic drive
ferrohydrodynamics
magnetic force