期刊文献+

采用带梢隙涡模型的面元法预报泵喷水动力性能 被引量:2

Hydrodynamic Performance Prediction of Pumpjet Using Surface Panel Method Together with Tip Gap Vortex Model
下载PDF
导出
摘要 为了预报泵喷推进器水动力性能,采用面元法建立了定常水动力干扰模型,将泵喷分为转子-桨毂和定子-导管两个系统,系统间的干扰通过诱导速度进行考虑。针对定转子的几何外形,提出了基于圆台面的叶片网格划分方法;并根据泵喷内部流动的真实情况,提出了适用于平顶式叶片的梢隙涡模型。通过从压力、环量以及推进性能等方面的结果对比,发现当泵喷考虑梢涡的影响时,转子叶片的整体环量分布以及梢部载荷更接近实际情况,性能曲线与粘流结果吻合良好,表明该方法可以有效地预报泵喷推进器定常水动力性能。 In order to predict the hydrodynamic performance ofa pumpjet, surface panel method is used to establish a steady hydrodynamic interaction model. Interaction between different systems is considered through induced velocities. Considering geometric shapes of stator and rotor, a meshing technique for blade based on circular conical surface is proposed. According to the actual internal flow of the pumpjet, a tip leakage vortex model for the blades with flat top is also proposed. The comparison of results including pressure, circulation and propulsion performance, shows that when the influence of the tip leakage vortex is considered, the overall circulation distribution of rotor blades and the tip lead are closer to the actual situation. The performance curves agree well with the results of viscous flow, which indicates that the proposed method for pumpjet propulsion can effectively predict the steady hydrodynamic performance
出处 《中国造船》 EI CSCD 北大核心 2017年第4期14-23,共10页 Shipbuilding of China
基金 国家自然科学基金(51379040) 国防基础科研计划资助项目(JCKY2016604B001)
关键词 面元法 泵喷推进器 性能预报 梢涡模型 圆台面网格划分 surface panel method pumpjet propulsion performance prediction tip leakage vortex model meshing technique on circular conical s/trface
  • 相关文献

参考文献7

二级参考文献28

  • 1刘小龙,王国强.螺旋桨非定常性能预估的面元法[J].船舶力学,2006,10(2):30-39. 被引量:6
  • 2王国强,刘小龙.带定子导管螺旋桨定常和非定常性能预估的基于速度势的面元法(英文)[J].船舶力学,2007,11(3):333-340. 被引量:15
  • 3Suryanarayana Ch, Satyanarayana B, Ramji K, etal. Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel[J]. International Journal of Naval Architecture and Ocean Engineering, 2010, 2(1) :24-33. 被引量:1
  • 4Suryanarayana Ch, Satyanarayana B, Ramji K. Per- formance evaluation of an underwater body and pumpjet by model testing in cavitation tunnel[J]. In-ternational Journal of Naval Architecture and Ocean En- gineering, 2010, 2(2):57-67. 被引量:1
  • 5Suryanarayana C, Satyanarayana B, Ramji K, et al. Experiment evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel[J]. International Journal of Naval Architecture and Ocean Engineering, 2010(2): 24-33. 被引量:1
  • 6Suryanarayana C, Satyanarayana B, Ramji K, et al. Performance evaluation of an underwater body and pumpjet by model testing in cavitation tunnel[J]. International Journal of Naval Architecture and Ocean Engineering, 2010(2): 57-67. 被引量:1
  • 7Seol H, Jung B, Suh J C, et al. Prediction of non-cavitating underwater propeller noise[J]. Journal of Sound and Vibration, 2002, 257(1): 131-156. 被引量:1
  • 8Rama K S , Rama K A, Ramji K. Reduction of motor fan noise using CFD and CAA simulations[J]. Applied Acoustics, 2011(72): 982-992. 被引量:1
  • 9Kucukcoskun K. Prediction of free and scattered acoustic fields of low-speed fans[D]. Lyon: Ecole Centrale de Lyon, 2012. 被引量:1
  • 10Kato C, Yamade Y, Wang H. Numerical prediction of sound generated from flows with a low roach number[J]. Computers & Fluids, 2007(36): 53-68. 被引量:1

共引文献71

同被引文献45

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部