期刊文献+

On the density of shifted primes with large prime factors 被引量:1

On the density of shifted primes with large prime factors
原文传递
导出
摘要 As usual, denote by P(n) the largest prime factor of the integer n 1 with the convention P(1) = 1.For 0 < θ < 1, define Tθ(x) := |{p x : P(p-1) ≥ p~θ}|.In this paper, we obtain a new lower bound for Tθ(x) as x →∞, which improves some recent results of Luca et al.(2015) and Chen and Chen(2017). As a corollary, we partially prove a conjecture of Chen and Chen(2017)about the size of Tθ(x). As usual, denote by P(n) the largest prime factor of the integer n 1 with the convention P(1) = 1.For 0 〈 θ 〈 1, define Tθ(x) := |{p x : P(p-1) ≥ p~θ}|.In this paper, we obtain a new lower bound for Tθ(x) as x →∞, which improves some recent results of Luca et al.(2015) and Chen and Chen(2017). As a corollary, we partially prove a conjecture of Chen and Chen(2017)about the size of Tθ(x).
作者 Bin Feng Jie Wu
出处 《Science China Mathematics》 SCIE CSCD 2018年第1期83-94,共12页 中国科学:数学(英文版)
基金 supported by Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJ1601213)
关键词 shifted prime friable integer SIEVE shifted prime friable integer sieve
  • 相关文献

参考文献1

共引文献1

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部