摘要
利用Wolk提出的粒子追踪方程,通过等分频率法划分不规则波谱,利用MATLAB做粒子运动模拟计算,得到无因次化泰勒离散系数K/D随时间t变化的曲线;通过与Huang等得到的P-M谱的泰勒离散系数K/D计算结果比较证明了本计算方法的可靠性。采用该方法研究了不规则波条件下,波序列(同一谱型不同波面序列)和谱型(谱峰周期、有效波高、谱峰升高因子)对波浪离散系数的影响;计算结果表明:同一谱型不同波序列对泰勒纵向离散系数稳定值和稳定时间无影响;不规则波谱峰周期越大,纵向离散系数K/D越小,稳定时间越短;有效波高越大,纵向离散系数K/D越大,稳定时间越长;谱峰升高因子越大,泰勒离散系数K/D越大,稳定时间越长;与规则波相比,不规则波的泰勒离散系数K/D的值略小10%~30%。
Based on Wolk's particle tracking equation,this study investigated the dimensionless Taylor dispersion K/D subject to random waves in time-domain.The Aliquots frequency method was used to simulate the random waves and the simulation of the particle motion was performed by MATLAB.The simulated results were verified by comparing to the results of Huang et al.Based on the simulated results,we discussed the effect of wave series(or different surface wave series with the same spectrum) and spectral type(including spectral peak period,significant wave height and higher spectral peak factor)on the dispersion coefficient under different random waves.The results show that different wave series with the same spectral type have insignificant effects on stable value and time of the Taylor dispersion coefficient.Also,K/D was observed to increase with shorter irregular spectral peak period,larger significant wave height and larger spectral peak factor.In addition,Taylor dispersion coefficient K/D under irregular waves is approximately 0.7~0.9 times of that under regular waves.
出处
《海洋通报》
CAS
CSCD
北大核心
2017年第6期638-643,共6页
Marine Science Bulletin
基金
水文水资源与水利工程科学国家重点实验室开放研究基金(2015491311)
海岸和近海工程国家重点实验室青年学者研究基金(LY1602)
关键词
泰勒离散
随机波浪
粒子追踪
Taylor dispersion
random wave
particle tracking