摘要
针对多体系统动力学非线性常微分方程形式,在时间域上采用微分求积法(DQ,Differential Quadrature Method),得到以时间域中各时间节点处函数值为未知数的非线性方程组,求解可得各时间节点处的函数值,从而得到满足工程应用需要的常微分方程数值解。以平面双连杆机械臂为例在时间域上采用微分求积法验证,结果表明,该方法具有数学原理简单、使用方便和精度高等优点,是一种求解多体系统动力学方程的有效方法。
Differential quadrature method(DQ)is developed for the nonlinear ordinary differential equations(ODE)of multibody system dynamics.The nonlinear equations with discrete state variables on the nodes of time domain is obtained by DQ method,and solved to get the discrete state variables at each node,which are the numerical solutions of the ODE satisfy the engineering application.As an example,the planar two-link system is used to verify the DQ method.Results show that the method has the advantages of simple principle,convenient use and high accuracy.It is an effective method to solve the nonlinear ODE of mutibody system dynamics.
出处
《青岛大学学报(自然科学版)》
CAS
2017年第4期19-24,共6页
Journal of Qingdao University(Natural Science Edition)
基金
国家自然科学基金项目(批准号:11272166
11472143)资助
关键词
多体系统动力学
微分求积法
非线性
常微分方程
multibody system dynamics
differential quadrature method
nonlinear
ordinary differential equation