期刊文献+

基于LSTM深度学习模型的中国电信官方微博用户情绪分析 被引量:12

Sentiment analysis of telecom official micro-blog users based on LSTM deep learning model
下载PDF
导出
摘要 中国电信官方微博(简称电信官微)作为一种互联网媒体,是中国电信对外发布信息并获取用户反馈的重要渠道。用户对电信官微消息内容的评论,反映了用户对中国电信品牌、产品和服务的不同态度。爬取了电信官微的消息内容和评论数据,对经过清洗的数据采用Word2vec进行文本信息表示,并使用深度学习平台基于LSTM深度神经网络模型进行用户交互文本的正负面情感分类,实现电信官微访问用户情绪分析。 As an internet media, China Telecom official micro-blog is an important channel for the company to publish information and get feedback from users. Users' comments on telecom official micro-blog messages reflect different at- titudes towards telecom brand, products and services. The message content and comment data of the micro-blog was crawled, and the Word2vec was used to express the text information after data cleaning, and the deep learning platform was chosen to carry out the positive and negative emotional classification of the user interaction text based on the LSTM deep neural network model, and sentiment analysis of telecom official micro-blog users was realized.
作者 蔡鑫 娄京生
出处 《电信科学》 北大核心 2017年第12期136-141,共6页 Telecommunications Science
关键词 深度学习 LSTM 情绪分析 微博 deep learning, LSTM, sentiment analysis, micro-blog
  • 相关文献

参考文献1

  • 1李航著..统计学习方法[M].北京:清华大学出版社,2012:235.

同被引文献63

引证文献12

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部