期刊文献+

基于邻域熵与蚁群优化的基因选择算法 被引量:1

Gene selection algorithm based on neighborhood entropy and ant colony optimization
下载PDF
导出
摘要 针对基因表达数据集的基因选择问题,采用邻域熵度量与蚁群优化原理,提出一种基因选择方法.首先,引入邻域粗糙集模型对基因数据进行邻域粒化,定义邻域熵度量用于剔除冗余基因构成预选择基因子集;然后,采用邻域熵构造基因重要度作为启发式信息,发挥蚁群优化算法的分布式、正反馈及全局寻优的优势,运用蚁群优化算法从预选择基因子集中搜索出最小基因子集;最后,在选取的最小基因子集上进行分类测试.实验表明:建立在该最小基因子集上的分类器具有良好的分类性能. To deal with the problem of selecting gene subset in a gene dataset,a novel gene selection method is proposed. Firstly,a neighborhood rough set model is introduced to granulate the gene data.The neighborhood entropy is defined for measuring the uncertainty of gene data and removing the redundant genes to constitute a pre-selected subset. Furthermore,the neighborhood entropy based gene importance is constructed as the heuristic information in the proposed ACO algorithm,which has the advantages of distributed,positive feedback and global optimization. The proposed algorithm has a good ability for finding the minimum critical gene subset from the pre-selected set. Finally,the classification experiments are carried out on the selected genes. The results show that the classifier constructed on the selected genes has a good classification performance.
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2017年第6期815-821,共7页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(61573297) 福建省教育厅科研资助项目(JA15363)
关键词 基因选择 蚁群优化 邻域熵 邻域粗糙集 gene selection ant colony optimization neighborhood entropy neighborhood rough sets
  • 相关文献

参考文献5

二级参考文献30

  • 1王珏,袁小红,石纯一,郝继刚.关于知识表示的讨论[J].计算机学报,1995,18(3):212-224. 被引量:54
  • 2王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 3苗夺谦.Rough Set理论及其在机器学习中的应用研究(博士学位论文)[M].北京:中国科学院自动化研究所,1997.. 被引量:3
  • 4[1]Khan J, Wei J S, Ringner M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 2001, 7(6): 673~679 被引量:1
  • 5[2]Anil K, Robert P R, Mar Jianchang. Statistical pattern recognition: A review. IEEE Trans Pattern Analysis and Machine Intelligence, 2000, 22(1): 4~37 被引量:1
  • 6[3]Herrero J, Valencia A, Dopazo J. A hierarchical unsupervised growing neural network for clustering gene expression patterns. bioinformatics, 2001, 17(2): 126~136 被引量:1
  • 7[4]Loog M, duin R P W. Multiclass linear dimension reduction by weighted pairwise Fisher criteria. IEEE Trans Pattern Analysis and Machine Intelligence, 2001, 23(7): 762~766 被引量:1
  • 8[5]Mjolsness E, DeCoste D. Machine learning for science: State of the art and future prospects. Science, 2001, 293(14): 2051~2055 被引量:1
  • 9[6]Ramaswarmy S, Tamayo P, Rifkin R, et al. Multiclass cancer diagnosis using tumor gene expression signatures. PNAS, 2001, 26: 15149~15154 被引量:1
  • 10[7]Xiong Momiao, Fang Xiangzhong, Zhao Jinying. Biomarker identification by feature wrappers. Genome Research (see www.genome.org), 2001, 11: 178~188 被引量:1

共引文献544

同被引文献32

引证文献1

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部