期刊文献+

基于EWT和SVD技术的齿轮故障诊断方法研究 被引量:3

Research on Gear Fault Diagnosis Method Based on EWT and SVD Technologies
下载PDF
导出
摘要 本文基于经验小波变换(EWT,empirical wavelet transform)和奇异值分解(SVD,singular value decomposition)技术提出了一种齿轮的故障诊断方法.首先采用EWT方法将齿轮的振动信号分解为若干个本征模态分量(IMF),并利用这些IMF分量形成向量矩阵.而后对初始向量矩阵进行奇异值分解,根据奇异值分解的三大特性,将求得的特征向量矩阵的奇异值作为齿轮振动信号的模式特征向量.最后通过建立马氏距离判别函数判断齿轮的振动情况和故障类型.通过对实际实验数据的分析,证明了该方法在齿轮故障诊断中有效性. Based on the empirical wavelet transform(EWT) and the singular value decomposition(SVD) tech- nique, a gear fault diagnosis method is proposed. The EWT method is used to decompose the vibration signal of the gear into several intrinsic mode function(IMF) signal, which are used to form the feature vector ma- trix. Then the singular values of the original vector matrix is obtained by SVD, which is taken as the pattern feature vector of the gear vibration signal. Finally, the vibration condition and the fault type of the gear are judged by establishing the Markov distance discriminant function. Through analyzing the actual experimental signals, it is proved that the method is effective in gear fault diagnosis.
出处 《三峡大学学报(自然科学版)》 CAS 北大核心 2018年第1期80-85,共6页 Journal of China Three Gorges University:Natural Sciences
基金 国家自然科学基金项目(51205230) 湖北省重点实验室开放基金课题(2016KSD15 2016KSD14) 三峡大学人才科研启动基金项目(KJ2012B014)
关键词 EWT SVD 齿轮 故障诊断 特征向量 empirical wavelet transform (EWT) singular value decomposition (SVD) gear fault diagnosis feature vector
  • 相关文献

参考文献5

二级参考文献39

  • 1李志农,吕亚平,范涛,冷传广.基于经验模态分解的机械故障欠定盲源分离方法[J].航空动力学报,2009,24(8):1886-1892. 被引量:18
  • 2于德介,程军圣,杨宇.基于EMD和AR模型的滚动轴承故障诊断方法[J].振动工程学报,2004,17(3):332-335. 被引量:47
  • 3徐进永,张子达,陆爽.基于K-L变换和支持向量机的滚动轴承故障模式的识别[J].吉林大学学报(工学版),2005,35(5):500-504. 被引量:7
  • 4赵松年, 熊小芸. 子波分析与子波变换[M]. 北京: 电子工业出版社, 1996.1~5. 被引量:1
  • 5Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc R Soc Lond A, 1998, 454: 903~995. 被引量:1
  • 6Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum [J]. Annu Rev Fluid Mech, 1999,31:417~457. 被引量:1
  • 7Vincent H T, Hu S L J, Hou Z. Damage detection using empirical mode decomposition method and a comparison with wavelet analysis[A]. Proceedings of the Second International Workshop on Structural Health Monitoring[C]. USA: Stanford,1998.891~900. 被引量:1
  • 8蒋正新, 施国梁. 矩阵理论及应用[M]. 北京: 北京航空学院出版社, 1988.87~95. 被引量:2
  • 9HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceeding of the Royal Society A,1998, 454(1971): 903-995. 被引量:1
  • 10YU D J, YANG Y, CHENG J SH. Application of time-frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis[J]. Measurement, 2007, 40(9): 823-830. 被引量:1

共引文献192

同被引文献30

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部