期刊文献+

多约束受扰追踪的微分对策滚动时域轨迹优化

Differential Game Trajectory Optimization Based on Receding Horizon Control for Multiple Constraints Tracking Systems with Additive Disturbance
下载PDF
导出
摘要 针对复杂洋流干扰环境下水下多约束追踪问题,提出一种滚动时域非线性微分对策控制策略.基于智能体自导探测信息,建立水下追踪相对运动模型与追踪过程约束.通过分析追踪特性,确立以相对运动信息为变量的微分对策模型,结合零效控制和滚动预测算法的实施,设计出一种考虑过程约束和干扰的具有终端约束的水下追踪制导律.对不同期望终端交会角进行追踪的仿真结果表明,该制导策略能有效对抗干扰、实时调整约束,具有良好的时效性和较强的鲁棒性. The problem of underwater tracking with multiple constraints in the complex ocean environment is formulated as a nonlinear differential games based on receding horizon control.The tracking relative motion model of underwater tracking is established using the agent homing detection information,on which the process constraints are developed.Using the relative motion information as state variable,the differential games model is obtained by analyzing the tracking characteristics.The nonlinear differential games tracking guidance law based impact angle constrain is derived from the underwater multiple constraints tracking systems with additive disturbance by the implementation of zero efficiency control and rolling prediction algorithm.The simulation results show that the guidance law has high time efficiency and strong robustness,which can resist the interference and adjust the constraints in real time.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2017年第12期1473-1479,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金(61473224) 教育部重点实验室开放基金(310825161107)资助项目
关键词 微分对策 滚动时域预测 追踪 轨迹优化 differential game~ receding horizon control~ tracking~ trajectory optimization
  • 相关文献

参考文献4

二级参考文献20

  • 1孙克辉,陈志盛,张泰山.统一混沌系统的自适应控制同步[J].控制与决策,2005,20(2):207-209. 被引量:11
  • 2燕奎臣,吴利红.AUV水下对接关键技术研究[J].机器人,2007,29(3):267-273. 被引量:55
  • 3Podder T, Sibenac M, BellinghamJ. AUV Docking System for Sustainable Science Missions[C] //Proceedings of IEEE International Conference on Robotics and Automation, 2004: 4478-4484. 被引量:1
  • 4McEwen R S, Hobson B W, McBride L, BellinghamJ G. Docking Control System for a 54-cm-Diameter(21-in) AUV[J]. IEEEJournal of Oceanic Engineering, 2008, 33 ( 4) : 550-562. 被引量:1
  • 5Jantapremjit P, Wilson P A. Optimal Control and Guidance for Homing and Docking Tasks Using an Autonomous Underwater Vehicle[C] //Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, 2007: 243-248. 被引量:1
  • 6Batista P, Silvestre C, Oliveira P. A Two-Step Control Approach for Docking of Autonomous Underwater Vehicles[J]. InternationalJournal of Robust Nonlinear Control, 2014, 25( 10): 1528-1547. 被引量:1
  • 7Fossen T I. Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles[M]. Trondheim, Norway: Marine Cybernetics AS, 2002: 5-54. 被引量:1
  • 8Maurovic I, Baotic M, Petrovic I. Explicit Model Predictive Control for Trajectory Tracking with Mobile Robots[C] // Proceedings of the 2011 IEEEl ASME International Conference on Advanced Intelligent Mechatronics, 2011: 712-717. 被引量:1
  • 9DauerJ, Faulwasser T, Lorenz S, Findeisen R. Optimization-Based Feed Forward Path Following for Model Reference Adaptive Control of an Unmanned Helicopter[C] //Proceedings of AIAA Guidance, Navigation and Control Conference, 2013. 被引量:1
  • 10Molero A, Dunia R, CappellettoJ, Fernandez G. Model Predictive Control of Remotely Operated Underwater Vehicles[C] // Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, 2011: 2058-2063. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部