期刊文献+

基于STM32自平衡车系统设计 被引量:6

Self-balancing vehicle system design based on STM32
下载PDF
导出
摘要 针对两轮自平衡车的多变量、非线性、本质不稳定、高耦合的运动控制特点,提出了利用STM32控制两轮平衡车系统方案,通过相关控制算法来对其进行平衡控制。其主要由主控MCU模块、姿态测量模块、蓝牙通讯模块、直流电机模块和电源模块组成。姿态测量模块将测量的数据传送给主控MCU模块,通过卡尔曼滤波算法对采集的数据处理得到小车姿态信息,然后应用PID算法进行处理,将处理的控制命令发送给直流电机的驱动模块,驱动模块直接控制直流电机的转速,产生向前或向后的加速度,来达到小车的自平衡。实验证明其工作性能良好,实现了其设计目标。 The two-wheeled self balancing vehicle is multivariable,nonlinear,unstable and high coupling in its motion control. A plan to control the two-wheeled balancing vehicle based on STM32 is put forward to achieve balance control by relevant control algorithm. It is mainly composed of main control MCU module, attitude measurement module, Bluetooth communication module, DC motor module and power module. The attitude measurement module measures data transmitted to the main control module MCU. Vehicle attitude information is gained from data processed through the Kalman filter algorithm. The PID algorithm is applied to process control commands to send to the DC motor drive module. The driver module directly controls the speed of DC motor,produces forward or backward acceleration to achieve self balancing of the vehicle. It is proved by experiment that the work performance is good and the design goal is achieved.
作者 王世峰
出处 《北京信息科技大学学报(自然科学版)》 2017年第6期74-78,共5页 Journal of Beijing Information Science and Technology University
关键词 自平衡 姿态检测 PID算法 STM32F103ZET6 卡尔曼滤波 self-balance attitude detection PID algorithm STM32F103ZET6 Kalman filter
  • 相关文献

参考文献3

二级参考文献24

  • 1[1]Swaminathan R, Nayar S K. Non-metric calibration of wideangle lenses and polycameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1172~1178 被引量:1
  • 2[2]Kang S B. Radial distortion snakes. In: Proceedings of IAPR Workshop on Machine Vision Applications, Tokyo, 2000. 603~606 被引量:1
  • 3[3]Devernay F, Faugeras O. Straight lines have to be straight:Automatic calibration and removal of distortion from scenes of structured environments. Machine Vision and Applications,2001, 13(1):14~24 被引量:1
  • 4[4]Weng J, Cohen P, Herniou M. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (10): 965~980 被引量:1
  • 5[5]Nomura Y, Sagara M, Naruse H, Ide A. Simple calibration algorithm for high-distortion-lens camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (11):1095~1100 被引量:1
  • 6[6]Shah S, Aggarwal J K. Intrinsic parameter calibration procedure for a (high distortion) fish-eye lens camera with distortion model and accuracy estimation. Pattern Recognition, 1996, 29(11): 1775~1788 被引量:1
  • 7[7]Zhang Z. On the epipolar geometry between two images with lens distortion. In: Proceedings of the International Conference on Pattern Recognition, Vienna, Austria, 1996. 407~411 被引量:1
  • 8[8]Stein G P. Lens distortion calibration using point correspondences. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Puerto Rico, 1997. 143~148 被引量:1
  • 9[9]Fitzgibbon A W. Simultaneous linear estimation of multiple view geometry and lens distortion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, 2001. 125~132 被引量:1
  • 10[10]Maybank S. Theory of Reconstruction from Image Motion. In:Springer Series in Information Sciences, New York: SpringerVerlag, 1993 被引量:1

共引文献81

同被引文献37

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部