期刊文献+

一种基于深度强化学习的调度优化方法 被引量:17

A Scheduling Optimization Method Based on Depth Intensive Study
下载PDF
导出
摘要 深度强化学习在于将深度学习的感知能力与强化学习的决策能力相结合,可以直接根据输入进行控制,是一种更接近人类思维方式的人工智能方法。旨在二者结合基础上,研究了一种基于深度强化学习的资源调度算法的设计框架。该框架首先利用从网络节点获取的大量先验数据,训练深度学习网络;然后利用强化学习来分配网络资源;接着通过大量的自我对弈,实现基于深度强化学习的价值网络学习。最后,设计实验方案对算法的性能进行了仿真和对比验证,以验证该算法的有效性。 Depth intensive study is a combination of deep learning perceived ability and enhanced learning decision-making ability which can be controlled by the input. Depth intensive study is an artificial intelligence method which is closer to human thinking. Based on the combination of the two methods, the paper studies a designed framework of resource scheduling algorithm based on depth intensive study. First, the framework utilizes a large number of priori data from the network nodes to train depth learning network. Then use the enhanced learning to allocate network resources, Next realize the value of network learning based on deep reinforcement learning through a lot of self-chess. Finally, the performance of the algorithm is simulated and compared, and the results confirm the effectiveness of the algorithm.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第6期1047-1053,共7页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(U1609216)资助
关键词 深度学习 调度算法 蒙特卡洛模拟 强化学习 deep learning scheduling algorithms Monte Carlo simulation reinforcement learning
  • 相关文献

参考文献4

二级参考文献189

  • 1Anderson T W.The asymptotic distribution of certain characteristic roots and vectors[C].In:Proc Second Berkeley Symp Math Statist Probability,Univ.California Press.Berkeley and Los Angeles,2001 : 103-130. 被引量:1
  • 2Xu L,Krzyzak A,Oja E.Rival penalized competitive learning for clustering analysis,RBF net,and curve detection[J].IEEE Transactions on Neural Networks,1999;4(4) :636--649. 被引量:1
  • 3Deemer,Walter L,Olkin Ingrain.The Jacobians of certain matrix transformations useful in multivariate analysis.Based on lectures of P L Hsu at the University of North Carolina,Biometrika,1997;38:345-367. 被引量:1
  • 4王文静.创新的教育研究范式:基于设计的研究[M].上海:华东师范大学出版社,2011.25. 被引量:1
  • 5[美]L·W·安德森等.学习、教学和评估的分类学——布鲁姆教育目标分类学修订版(简缩本)[M].上海:华东师范大学出版社,2007.58-76. 被引量:1
  • 6Biggs,J.B.,Collis,K.F..Evaluating the Quality of Learning:the SOLO Taxonomy[M].New York:Academic Press,1982. 被引量:1
  • 7Smith,T.W.,Colby,S.A..Teaching for Deep Learning[J].The Clearing House,2007,80(5):205-209. 被引量:1
  • 8李锋.信息技术课程学习评价的理论与方法研究[D].上海:华东师范大学,2004.24-29. 被引量:1
  • 9[美]D·R·克拉斯沃尔,B·S·布卢姆等.教育目标分类学[M].上海:华东师范大学出版社,1989. 被引量:1
  • 10KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105. 被引量:1

共引文献963

同被引文献162

引证文献17

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部