期刊文献+

基于CNN的水质特征提取模型

The feature extraction model of water quality based on CNN
下载PDF
导出
摘要 针对液体中物质浓度预测模型,构建一种基于卷积神经网络的水质特征提取模型。首先,定义含有卷积层、采样层、全连接层的七层网络结构,选取适当的最优化方法和损失函数,对模型进行训练调整参数。接着分析了不同损失函数对模型训练和模型验证的影响。实验验证了在水质检测领域运用卷积神经网络回归的可行性。 In the light of the prediction model of mass concentration in liquid, a model of water quality feature extraction based on convolutional neural network was constructed. First of all, the model was trained and the parameters were adjusted by the definition of seven layer network structure including convolution layer, pooling sampling layer and fUlly connected layer and the selection of appropriate optimization method and loss function. Then, the influence of different loss functions on model tra-ining and model validation was analysed. Finally, the experiments verified the feasibility of applying the convolution neural net-work in the field of water quality detection.
出处 《信息通信》 2017年第12期61-63,共3页 Information & Communications
关键词 卷积神经网络回归 光谱分析 水质检测 损失函数 梯度下降 convolutional neural network regression spectrum analysis water qiiality monitoring loss function gradient descent
  • 相关文献

参考文献5

二级参考文献60

共引文献1851

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部