期刊文献+

多用户干扰信道下建模于流形上的联合干扰对齐预编码 被引量:1

Manifold-Modeled Joint Interference Alignment Precoding in Multiuser Interference Channel
下载PDF
导出
摘要 首先从子空间对齐的角度将干扰信号功率和有用信号功率联合优化的问题建模于Grassmannian流形上,有约束的最优化问题被转化为降维的无约束的最优化问题。然后利用Grassmannian流形的几何特性,提出了一种基于Grassmannian流形上共轭梯度算法的联合干扰对齐预编码方案。计算机仿真表明,该算法兼顾干扰信号功率的最小化和有用信号功率的最大化,可以有效提高系统的和速率性能,而且该算法可以有效解决Grassmannian流形上最陡下降算法每次寻优的90°转折问题,具有更高的收敛速度。 Firstly, from the perspective of subspace alignment, the joint optimization problem of the in- terference signal power and the useful signal power is modeled on the Grassmannian manifold. The constrained optimization problem is transformed into the unconstrained optimization problem with lower dimension. Then, using the geometric properties of the Grassmannian manifold, a joint interference align- ment precoding scheme based on conjugate gradient algorithm on the Grassmannian manifold is proposed. Computer simulation results show that the proposed scheme improves the sum rate performance of the multiuser MIMO interference system by jointly considering the minimization of the interference signal power and the maximization of the useful signal power, and also improves the convergence speed by effectively solving the 90° turning problem of the Grassmannian steepest descent algorithm.
作者 李汀
出处 《数据采集与处理》 CSCD 北大核心 2017年第6期1115-1124,共10页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61771254 61471200)资助项目 江苏省自然科学基金(BK20140881)资助项目 南京邮电大学(2016外71)资助项目
关键词 多用户干扰信道 干扰对齐 Grassmannian流形 最优化算法 multiuser interference channel interference alignment Grassmannian manifold optimization algorithm
  • 相关文献

参考文献4

二级参考文献139

  • 1黄丘林,史小卫.MIMO系统中分集增益和空间复用增益的折衷关系[J].电子与信息学报,2007,29(3):681-685. 被引量:8
  • 2Soldani D, Manzalini A. Horizon 2020 and beyond: On the 5G operating system for a true digital society[J]. IEEE Vehicular Technology Magazine, 2015, 10(1): 32-42. 被引量:1
  • 3Wu Y, Chen Y, Tang J, So D, et al. Green transmission technologies for balancing the energy efficiency and spectrum effi- ciency trade-off[J]. IEEE Communications Magazine, 2014, 52(11): 112-120. 被引量:1
  • 4Cavaleante R, Sta ezak S, Schubert M, et al. Toward energy-efficient 5G wireless communications technologies[J]. IEEE Signal Processing Magazine, 2014, 31(6): 24-34. 被引量:1
  • 5Ghosh A, Mangalvedhe N, Ratasuk R, et al. Heterogeneous cellular networks: From theory to practice[J]. IEEE Commu- nications Magazine, 2012, 50(6): 54-64. 被引量:1
  • 6Zhang X, Cheng W, Zhang H. Heterogeneous statistical QoS provisioning over 5G mobile wireless networks[J]. IEEE Net- work, 2014, 28(6): 46-53. 被引量:1
  • 7Sabellal D, Domenico A, Katranaras E,et al. Energy efficiency benefits of RAN-as-a-Service concept for a cloud-based 5 G mobile network infrastructure[J]. IEEE Access, 2014, 2: 1586-1697. 被引量:1
  • 8Larsson E, Edfors O, Tu{vesson F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014, 52(2): 186-195. 被引量:1
  • 9Imran A, Zoha A, Abu-Dayya A. Challenges in 5G: How to empower SON with big data for enabling 5 G[J]. IEEE Net- work, 2014, 28(6): 27-33. . 被引量:1
  • 10Wei L, Hu R, Qian Y, et al. Key elements to enable millimeter wave communications for 5 G wireless systems[J]. IEEE Wireless Communications, 2014, 21(6): 136-143. 被引量:1

共引文献75

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部