摘要
本文以山西省霍西煤矿区为研究区,利用遥感和GIS方法对滑坡灾害的敏感性进行了数值建模与定量评价。利用交叉检验方法构建了径向基核函数支持向量机滑坡敏感性评价模型,并基于拟合精度对模型进行了定量评价;对各评价因子在模型中的重要性进行对比分析;基于空间分辨率为30 m的评价因子,通过径向基核函数支持向量机模型获得了霍西煤矿区滑坡敏感性指数值,并利用分位数法将霍西煤矿区的滑坡敏感性分为极高、高、中和低4个等级。结果表明:拟合精度建模阶段和验证阶段分别为87.22%和70.12%;与滑坡敏感性关系最密切的5个评价因子依次是岩性、距道路距离、坡向、高程和土地利用类型;极高和高敏感区域分布了93.49%的滑坡点,面积占总面积的50.99%,是比较合理的分级方案。本研究不仅可以为研究区人工边坡调查和煤矿资源合理开采提供借鉴,对相似矿区的相关工作也具有参考价值。
Taking Huoxi Coal Mine Area in Shanxi Province as the research area, we conducted numerical modeling and quantitative evaluation of landslide susceptibility using remote sensing and GIS technology. Based on the DEM with spatial resolution of 30 m × 30 m, five topographical parameters were derived: elevation, slope angle, slope aspect, plan curvature and profile curvature. Stratigraphic lithology was digitized based on the geological maps from Department of Geological Survey in 1:50 000 scale. Fault network, drainage network and road were digitized based on the geological maps and other thematic maps from Department of Land Resource in 1:50 000 scale. Then, buffer for faults, drainage, and road were done. Mining disturbance were digitized based on the planning maps of coal resources. If the point falls in the mine area, it is proved to be disturbed by the mining disturbance, otherwise is not affected. NDVI and land-use types interpreted and computed the Landsat TM images. Landslide data was collected by Bureau of Land and Resources and it is represented by the X, Y coordinates of its central point. Then, the correlation characteristics among evaluation factors and the spatial distribution of landslides were acquired by using remote sensing technology and GIS spatial analysis method. Repeated 5-fold cross validation method was adopted in this research and the landslide/non-landslide datasets were randomly split into a ratio of 80:20 for training and validating models. Based on the methods of the 5-fold cross-validation and the fitting accuracy to the constructed the landslide susceptibility assessment model-Radial Basis Function - Support Vector Machine (RBF-SVM), the precision of the models was quantitatively assessed. We calculated the importance of each evaluation factor in the RBF-SVM model. Meanwhile, we obtained landslide susceptibility map of Huoxi Coal Mine Area based on the RBF-SVM model. The landslide susceptibility of Huoxi Coal Mine Area was divided into four scales referencing the quantile
出处
《地球信息科学学报》
CSCD
北大核心
2017年第12期1613-1622,共10页
Journal of Geo-information Science
基金
国家重点研发计划"地球观测与导航"专项(2016YFB0502601)
国家自然科学基金项目(41371373
41301469)
关键词
滑坡敏感性
GIS
支持向量机
交叉验证
霍西煤矿区
landslide susceptibility
GIS
Support Vector Machines
cross-validation
Huoxi Coal Mine Area