摘要
We consider a class of generalized Fibonacci unimodal maps for which the central return times {Sn} satisfy that sn= sn-1 + ksh-2 for some k≥ 1. We show that such a unimodal map admits a unique absolutely continuous invariant probability with exactly stretched exponential decay of correlations if its critical order lies in (1, k + 1).
We consider a class of generalized Fibonacci unimodal maps for which the central return times {Sn} satisfy that sn= sn-1 + ksh-2 for some k≥ 1. We show that such a unimodal map admits a unique absolutely continuous invariant probability with exactly stretched exponential decay of correlations if its critical order lies in (1, k + 1).
基金
supported by AcRF-Tier 1 grant from MOE,Singapore(Grant No.R-146-000-199-112)