期刊文献+

具有非单调发生率的时滞随机传染病模型分析

Analysis of a Stochastic Delayed Epidemic Model with a Non-Monotonic Incidence Rate
下载PDF
导出
摘要 传染病模型易受外界随机因素的干扰.该文提出一类具有非单调发生率的时滞随机传染病模型.利用Lyapunov方法及伊藤公式,证明了该模型具有唯一一个正全局解和该模型的无病平衡点是随机稳定的,并且得到了相应的确定型模型地方病平衡点在随机扰动下的渐近性.最后,利用数值仿真图例对理论结果加以验证说明. Epidemic models are often subject to random perturbations. This article proposes a stochastic delayed epidemic model with a non-monotonic incidence rate. By the Lyapunov method and ItS's formula, the existence of a unique global positive solution of the model and the stability of the disease-free equilibrium of the model are proved. The asymptotic behavior around the endemic equilibrium of the associated definite model is obtained. Finally, numerical simulations are presented to illustrate the results.
作者 孟笑莹 Meng Xiaoying(The School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 43007)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2017年第6期1162-1175,共14页 Acta Mathematica Scientia
基金 国家自然科学基金(61503415)~~
关键词 随机传染病模型 稳定性 渐近性 LYAPUNOV函数 伊藤公式 Stochastic epidemic model Stability Asymptotic behavior Lyapunov function Ito's formula.
  • 相关文献

参考文献2

二级参考文献12

  • 1周艳丽,王贺桥,王美娟,徐长永.具有脉冲预防接种的SIQR流行病数学模型[J].上海理工大学学报,2007,29(1):11-16. 被引量:10
  • 2庞国萍,陈兰荪.具饱和传染率的脉冲免疫接种SIRS模型[J].系统科学与数学,2007,27(4):563-572. 被引量:25
  • 3Yang Y, Xiao Y. Threshold dynamics for compartmental epidemic models with impulses. Nonlinear Analysis: Real World Applications, 2012, 13:224 34. 被引量:1
  • 4Hu Z X, Liu S, Wang H. Backward bifurcation of an epidemic modei with standard incidence rate and treatment rate. Nonlinear Analysis: Real World Applications, 2008, 9:2302-2312. 被引量:1
  • 5Zhang J, Ma Z E. Global dynamics of an SEIR epidemic model with saturating contact rate. Mathematical Biosciences. 2003. 185:15-32. 被引量:1
  • 6Lakmeche A, Arino O. Bifurcation of nontrivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment.Dynamics of Continuous, Discrete and Impulsive System, 2000, 7:265-287. 被引量:1
  • 7Tang S Y, Chen L S. Density-dependent birth rate, birth pulses and their population dynamics conse- quences. Journal of Mathematical Biology, 2002, 190:185-199. 被引量:1
  • 8Gakkhar S, Negi K. Pulse vaccination in SIRS epidemic model with non monotonic incidence rate, Chaos, Solitons and Fractals, 2008, 35:626-638. 被引量:1
  • 9Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer-Verlag, 1983. 被引量:1
  • 10钱临宁,陆启韶.一类自治脉冲微分方程的动力学研究[J].动力学与控制学报,2008,6(2):97-101. 被引量:6

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部