期刊文献+

指数抽样分布定理及三个期望之极小方差无偏估计的有效性比较

Exponential sample theorem and efficiency comparison of three local minimum variance unbiased estimators of mean of the exponential distribution
下载PDF
导出
摘要 在相关文献工作的基础上完善指数抽样分布定理.首先导出指数分布样本最大值与样本最小值之差的分布,并证明了样本最大值与样本最小值之差和样本最小值相互独立;然后导出指数分布样本最大值与样本均值之差的分布,并证明了样本最大值与样本均值之差和样本最小值相互独立.从而构造出三个期望之极小方差无偏估计,基于样本均值与样本最小值之差和样本最小值构造出的期望之极小方差无偏估计,恰好是期望之一致最小方差无偏估计;文末,在小样本情景下,对上述三个期望之极小方差无偏估计作了有效性比较. This article continues the works of references, so as to improve and perfect the exponential sample theorem.first, the distribution of the difference between sample maximum and minimum of exponential distribu- tion is derived,and that the difference of these two statistics is mutually independent with the sample minimum is proven. Also, this article derives the distribution of the difference between sample maximum and sample mean, and demonstrates that the difference of these two statistics is mutually independent with the sample minimum. Thus, the three locM minimum variance unbiased estimators could be built,the one which is built by sample minimum and the difference between sample mean and sample minimum, is precisely the UMVUE of of mean of the Exponential distribution. At last, in small sample, the efficiency comparison is made among above-mentioned three local minimum variance unbiased estimators of mean of the Exponential distribution.
出处 《纯粹数学与应用数学》 2017年第6期568-577,共10页 Pure and Applied Mathematics
基金 宁波大学学科项目(XKL14D2037)
关键词 指数抽样分布定理 样本最大值 分布 期望 极小方差无偏估计 有效性 exponential sample theorem, sample maximum, difference, distribution, mean, local minimum variance unbiased estimator, efficiency
  • 相关文献

二级参考文献14

  • 1李国安.二元Weinman型指数分布的特征及其应用[J].Journal of Mathematical Research and Exposition,2005,25(2):337-340. 被引量:12
  • 2李国安.多元Marshall-Olkin型指数分布的特征及其参数估计[J].工程数学学报,2005,22(6):1055-1062. 被引量:17
  • 3Marshall A W,Olkin I. A multivariate exponential distribution [ J ]. Journal of American Statistical Association ,1967,62( 1 ) :30 -44. 被引量:1
  • 4Arnold B C. Parameter restimation for a multivariate exponential distribution[ J ]. Journal of American Statistical Association, 1968, 63:848 - 852. 被引量:1
  • 5Prosehan F, Sullo P, Estimating The Parameters of A Bivariate Exponential Distribution in Several Sampling Situations [ a]. In: Proschan F, Serfling R F Reliability and Biometry, SIAM, Philadelphia, 1974, 423 - 440. 被引量:1
  • 6Proschan F, Sullo P. Estimating the parameters of a muhivariate exponential distribution [ J ]. J. Amer. statist. Assoc. 1976, 71:465 - 472. 被引量:1
  • 7Basu A P, Ghosh J K. Identifiability of the muhinorma and other distributions under competing risks model [ J ]. Journal of Multivariate Analysis, 1978,8 (3) :413 - 429. 被引量:1
  • 8Juan Li, Weixing Song, Jianhong Shi. Parametric bootstrap simultaneous confidence intervals for differences of means from several two-parameter exponential distributions [ J ]. Statistics and Probability Letters ,2015,106:39 - 45. 被引量:1
  • 9Weinman D G. A multivariate extension of the exponential distribution [ D ] : [ Ph. D. thesis ]. Phoenix : State University, 1966. 被引量:1
  • 10CramerE,Kamps U. The UMVUE ofP(X < Y) based on Type-II censored samples from Weinman multivariate exponential distributions [ J]. Metrika, 1997 (46) ,93 - 121. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部