期刊文献+

基于迁移学习的红外图像超分辨率方法研究 被引量:4

Research on infrared image super-resolution based on transfer learning
下载PDF
导出
摘要 针对红外图像空间分辨率低、成像质量不高的问题,提出了基于迁移学习的红外图像超分辨率方法。该方法以基于卷积神经网络的自然图像超分辨率方法为基础进行改进:增加网络的层数进行更深层次的学习训练,串联多层小的卷积核使其能够利用更多的图像信息,以"相差图"为目标进行训练,减小网络训练时间,提升网络收敛速度;利用迁移学习知识,再以少量高质量红外图像为目标样本,对自然图像超分辨率的网络进行二次训练,将网络权重经过微调后迁移应用到红外图像的超分辨率上。实验结果表明:基于卷积神经网络的超分辨率方法能够有效迁移应用到红外图像的超分辨率上,且改进后的网络具有更好的自然及红外图像的超分辨率性能,验证了本文所提方法的有效性及优越性。 Aiming at the problem of low spatial resolution and low image quality of the infrared images, an infrared im- age super-resolution method based on transfer learning was proposed. The proposed method was improved from three aspects based on natural image super-resolution method using convolutional neural network. Firstly, it increased the number of network layers so as to carry on deeper learning and training. Besides,it cascades a serial of small convolu- tion kernels to make more use of contextual information in original images, and trained with the goal of residual image in order to reduce the training time and lift the convergence speed. Lastly, according to the knowledge of transfer learn- ing, the network of natural image super-resolution was trained one more time based on the existed network with a small amount of infrared images in high quality as the target samples, and the weights of improved network for natural image super-resolution was fine-tuned and then applied to the infrared image super-resolution. The results of experiments show that the super-resolution method based on convolutional neural network can be effectively transferred to the ap- plication of infrared image super resolution, and the improved network plays a largely better role in natural and infrared image super-resolution, which proves the validity and superiority of the proposed method.
出处 《激光与红外》 CAS CSCD 北大核心 2017年第12期1559-1564,共6页 Laser & Infrared
基金 国家自然科学基金项目(No.61471382) 山东省自然科学基金项目(No.ZR2016FQ17)资助
关键词 超分辨率 红外图像 卷积神经网络 迁移学习 super resolution infrared image convolutional neural network transfer learning
  • 相关文献

参考文献2

二级参考文献20

  • 1Freeman W T, Jones T R, Pasztor E C. Example based super-resolution[J]. IEEE Computer Graphics and Appli- cations, 2002, 22(2): 56-65. 被引量:1
  • 2Mallat S, Yu G. Super-resolution with sparse mixing esti- matorsJ3. IEEE Transactions on Image Processing, 2010, 19(11): 2889 2900. 被引量:1
  • 3Peleg T, Elad M. A statistical prediction model based on sparse representations for single image super-resolution [J], IEEE Transactions on Image Processing, 2014, 23(6) : 2569-2582. 被引量:1
  • 4Yang J, Wang Z, Lin Z, et al. Coupled dictionary trainingfor image super-resolution[J]. IEEE Transactions on Im- age Processing, 2012, 21(8)= 3467-3477. 被引量:1
  • 5Yang J, Wright J, Huang T S, et al. Image super-resolu- tion via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2851-2873. 被引量:1
  • 6Zeyde R, Elad M, Protter, M. On single image scale-up using sparse-representations [C]//Proceedings of the 7th International Conference on Curves and Surfaces, Avi- gnon, Berlin: Springer Berlin Heidelberg, 2010, 711-730. 被引量:1
  • 7Dong W S, Zhang L, Shi G M, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization[J]. IEEE Transactions on Im- age Processing, 2011, 20(7): 1838-1857. 被引量:1
  • 8Wang S L, Zhang L, Liang Y, et al. Semi-coupled dic- tionary learning with applications to image super-resolu- tion and photo-sketch synthesis[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence. Piscataway, NJ: IEEE Press, 2012, 2216 2223. 被引量:1
  • 9Aharon M, Elad M, Bruekstein A. K-svd: An algorithm for designing overcomplete dictionaries for sparse repre sentation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. 被引量:1
  • 10Beck A, Teboulle M. A fast iterative shrinkage-threshol- ding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(1) : 183-202. 被引量:1

共引文献4

同被引文献49

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部