期刊文献+

水电厂LCU异常行为识别模型研究 被引量:1

Study on Identification Model of Abnormal Behavior of LCU in Hydropower Plant
下载PDF
导出
摘要 随着水电厂电力监控系统信息化和自动化的进一步融合,生产区各种信息化设备和应用系统数量不断增加,其安全问题也愈加突出。为了加强水电厂电力监控系统的安全维护与管理,必须能够识别水电厂LCU的异常行为。基于对LCU异常行为的研究与分析,智能学习LCU正常行为,智能识别LCU异常行为。LCU异常行为识别提高了水电厂LCU系统信息安全管理效率和水平,从技术层面实现了安全评估自动化,对水电厂LCU系统信息安全建设具有一定的指导意义。 With the development of information technology in hydropower plant, the number of network equipment and application system is increasing, and the security management is becoming more and more serious. In order to maintain the security and management of the hydropower plant information system, it is necessary to be able to identify the abnormal behavior of LCU in hydropower plant. Based on the research and analysis of abnormal behavior of LCU, intelligent learning LCU normal behavior, intelligent recognition of abnormal behavior of LCU. LCU abnormal behavior recognition improves hydropower plant LCU system information security management efficiency and level, from the technical level to achieve the automation of safety assessment, has certain guiding significance to the construction of information security system of hydropower plant LCU.
出处 《自动化博览》 2017年第11期48-52,共5页 Automation Panorama1
关键词 水电厂LCU 异常行为特征 智能识别 智能学习 Hydropower plant LCU Abnormal behavior Intelligent recognition Intelligent learning
  • 相关文献

参考文献7

二级参考文献58

  • 1张相锋,孙玉芳,赵庆松.基于系统调用子集的入侵检测[J].电子学报,2004,32(8):1338-1341. 被引量:10
  • 2[1]Lee Wenke, Stolfo S J. Data mining approaches for intrusion detection. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998 被引量:1
  • 3[2]Lee Wenke, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models. In: Proc the 1999 IEEE Symposium on Security and Privacy, Berkely, California, 1999. 120-132 被引量:1
  • 4[3]Lee Wenke. A data mining framework for constructing features and models for intrusion detection systems[Ph D dissertation]. Columbia University, 1999 被引量:1
  • 5[4]Paxson Vern. Bro: A system for detecting network intruders in real-time. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998 被引量:1
  • 6[5]Agrawal Rakesh, Srikant Ramakrishnan. Fast algorithms for mining association rules. In: Proc the 20th International Conference on Very Large Databases, Santiago, Chile, 1994 被引量:1
  • 7[6]Agrawal Rakesh, Srikant Ramakrishnan. Mining sequential patterns. IBM Almaden Research Center, San Jose, California:Research Report RJ 9910, 1994 被引量:1
  • 8[7]Chen M, Han J, Yu P. Data mining: An overview from database perspective. IEEE Trans Knowledge and Data Engineeing, 1996,8(6):866-883 被引量:1
  • 9Lane T. Machine learning techniques for the computer security domain of anomaly detection [D].Purdue University, 2000. 被引量:1
  • 10Warrender C, Forrest S. Pearlmutter B. Detecting intru-sions using system calls: altematived.t, models[A].Proceedings of the 1999 IEEE Symposium on Security and Privacy[C]. Berkely, California, USA: IEEE Compu-ter Society, 1999:133-145. 被引量:1

共引文献500

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部