摘要
受Srivastava等(Srivastava H M,Chaudhry M A,Agarwal R P.The incomplete Pochhammer symbols and their applications to hypergeometric and related functions.Integral Transforms and Special Functions,2012,23(9):659-683)对不完全Pochhammer符号在超几何函数上的应用,以及Qetinkaya(Cetinkaya A.The incomplete second Appell hypergeometric functions.Applied Mathematics and Computation,2013,219(15):503-516)对不完全的第二类Appell函数的研究的启发,通过引入不完全beta函数,给出了不完全的第一类Appell函数的定义,并研究其微分性质、积分变换式和递推公式.
Inspired by Srivastava, et al.'s work (Srivastava H M, Chaudhry M A, Agarwal R P. The incomplete Pochhammer symbols and their applications to hypergeometric and related functions. Integral Transforms and Special Functions, 2012, 23(9): 659-683) on the incomplete Pochhammer symbols and their applications to hypergeometric and related functions, and also Cetinkaya's researches (Cetinkaya A. The incomplete second Appell hypergeometric functions. Applied Mathematics and Computation, 2013, 219(15): 503-516) on the incomplete second Appell hypergeometric function, the incomplete first Appell hypergeometric functions are defined by introducing the incomplete beta function. The differential properties, integral transformations and recurrence formulas are researched.
出处
《应用数学与计算数学学报》
2017年第4期528-538,共11页
Communication on Applied Mathematics and Computation
基金
国家自然科学基金青年科学基金资助项目(11201291)
上海市自然科学基金青年资助项目(12ZR1443800)