期刊文献+

具有随机波动率的美式期权定价

American option pricing with stochastic volatility processes
下载PDF
导出
摘要 为了更好地解决期权定价中存在的问题,研究了带有Heston随机波动率模型的期权定价问题,对美式期权的最佳实施边界及其提前执行的条件进行了分析和讨论。鉴于美式期权不存在解析定价公式,通过离散化参数空间将带有Heston随机波动率的美式期权价格所满足的随机偏微分方程转化为相应的差分方程,进而采用高阶紧式有限差分方法进行求解,得到了期权价格的数值解。通过数值实验对理论结果进行验证和模拟,对带有常数波动率和随机波动率条件下的两种最佳实施边界进行比较,发现最佳实施边界也具有随机波动性;在设定参数下对波动率的行为和性质进行分析,模拟出波动率曲线,并对高阶紧差分方法的计算结果进行比较,得到了期权的数值解,验证了算法的有效性。此方法对解决随机波动率下的期权定价其他问题,如:随机波动率下的多标的资产期权定价、障碍期权定价的研究具有借鉴价值。 In order to solve the problem of option pricing more perfectly,the option pricing problem with Heston stochastic volatility model is considered.The optimal implementation boundary of American option and the conditions for its early execution are analyzed and discussed.In view of the fact that there is no analytical American option pricing formula,through the space discretization parameters,the stochastic partial differential equation satisfied by American options with Heston stochastic volatility is transformed into the corresponding differential equations,and then using high order compact finite difference method,numerical solutions are obtained for the option price.The numerical experiments are carried out to verify the theoretical results and simulation.The two kinds of optimal exercise boundaries under the conditions of the constant volatility and the stochastic volatility are compared,and the results show that the optimal exercise boundary also has stochastic volatility.Under the setting of parameters,the behavior and the nature of volatility are analyzed,the volatility curve is simulated,the calculation results of high order compact difference method are compared,and the numerical option solution is obtained,so that the method is verified.The research result provides reference for solving the problems of option pricing under stochastic volatilitysuch as multiple underlying asset option pricing and barrier option pricing.
作者 李萍 李建辉
出处 《河北科技大学学报》 CAS 2017年第6期542-547,共6页 Journal of Hebei University of Science and Technology
基金 陕西省自然科学基金(2016JM1009) 陕西省教育厅专项科研计划基金(15JK2183 15JK2134)
关键词 金融市场 随机分析 美式期权 随机波动率 自由边界 有限差分法 finance markets stochastic analysis American option stochastic volatility free boundary finite difference method
  • 相关文献

参考文献1

二级参考文献11

  • 1Sun Y D, Shi Y M. A new method for European option pricing with two stocks. Physical Sciences, 2010, 14(1): 165-171. 被引量:1
  • 2Cox J, Ross S A. The valuation of options for alternative stochastic processes. Financial Economics, 1976, 3(1): 145-166. 被引量:1
  • 3Cox J C, Ross S A, Rubinstein M. Option pricing: a simplified approach. Finance Economics, 1979, 7(3): 229-263. 被引量:1
  • 4Su Y L, Lin T I, Lee C F. Constant elasticity of variance (CEV) option pricing model: integration and detailed derivation. Mathematics and Coputers in Simulation, 2008, 79(1): 60-70. 被引量:1
  • 5Chen R R, Lee C F. A constant elasticity of variance (CEV) family of stock price distributions in option pricing: review and integration. Financial Study, 1993, 1(1): 29-51. 被引量:1
  • 6Emanuel D, MacBeth J. Further results on the constant elasticity of variance call option pricing formula. Finan Quantitative Anal, 1982, 1T(1): 533-554. 被引量:1
  • 7Brandt M W, Kang Q. On the relationship between the conditional mean and volatility of stock returns: a latent VAR approach. Financial Economics. 2004, 72(2): 217-257. 被引量:1
  • 8Feller W. Two singular diffusion problems. Annals of Mathematics, 1951, 54(1): 173-182. 被引量:1
  • 9蹇明,边潇男.模糊环境下带交易费用的权证定价模型[J].数学物理学报(A辑),2010,30(5):1254-1262. 被引量:2
  • 10薛红,孙玉东.分数跳-扩散过程下亚式期权定价模型[J].工程数学学报,2010,27(6):1009-1014. 被引量:16

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部