期刊文献+

基于深度学习的植物图像识别方法研究 被引量:11

Research on Plant Image Recognition Method Based on Depth Learning
下载PDF
导出
摘要 传统植物图像识别研究主要集中在植物叶片图像。研究将深度神经网络学习运用于植物识别领域,突破局部叶片图像的限制,对常规植物图片进行识别。该方法运用google Net的深度卷积神经网络结构,通过图像旋转、镜像、随机裁剪等数据预处理方法扩充训练集,再利用SGD(随机梯度下降法)进行模型算法优化,生成对50种常规植物图像的识别模型。结果表明,该模型在测试集上能够达到平均90%的准确率。 Traditional plant image recognition research is mainly focused on plant leaf images.The deep neural network was applied to the field of plant recognition,it breaks through the restriction of the local leaf image and identifies the conventional plant pictures.GoogleNet deep convolution neural network structure was used, the training set was extend by data preprocessing methods such as image rotation, mirror image, random clipping and so on, and then SGD (stochastic gradient descent method )was used to optimize the model algorithm to generate 50 kinds of common plant image recognition model.The results showed that the model could achieve an average accuracy of 90% on the test data set.
出处 《现代农业科技》 2017年第23期278-280,共3页 Modern Agricultural Science and Technology
关键词 植物图像识别 深度学习 神经网络 plant image recognition depth learning neural network
  • 相关文献

参考文献5

二级参考文献70

共引文献106

同被引文献105

引证文献11

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部