期刊文献+

基于序列标注算法比较的医学文献风险事件抽取研究 被引量:6

RESEARCH ON MEDICAL DOCUMENT RISK EVENT EXTRACTION BASED ON COMPARISON OF SEQUENCE MARKING ALGORITHMS
下载PDF
导出
摘要 医学文献快速增长,如何从医学文献文本大数据中挖掘出有价值的知识是一种巨大挑战。聚焦医学文献中定量风险语句的风险事件抽取,构建智能临床决策支持系统医学风险知识库。运用序列标注算法中重要的隐马尔可夫模型、最大熵马尔可夫模型和条件随机场三种模型分别对医学文献非结构化全文文本中风险事件信息进行抽取,并对算法进行比较。从三个模型平均F1测度值来看,条件随机场效果最好,其次为最大熵马尔可夫模型,然后是隐马尔可夫模型,但是每个模型都有自己对某些风险事件抽取的准确率或者召回率的优势。 With the rapid growth of medical literature, it is a huge challenge to extract valuable knowledge from big data in medical literature text. This paper focused on the event extraction of quantitative risk statements in medical literature, and constructed the knowledge base of intelligent clinical decision support system. Firstly, the risk events corresponding to the quantitative risk information were extracted from the medical literature, and then the risk events were processed. The hidden Markov model, the maximum entropy Markov model and the conditional random field model were used to extract the information of the risk events in medical literature unstructured full text, and the algorithms were compared. From the average F1 of three models, conditional random field was the best, followed by maximum entropy Markov model, and then the hidden Markov model, but each model had its own advantage of certain event extraction accuracy or recall.
出处 《计算机应用与软件》 2017年第12期58-63,共6页 Computer Applications and Software
基金 重庆市社会民生科技创新专项项目(cstc2015shmszx120025)
关键词 医学文献 风险事件 隐马尔可夫模型 最大熵马尔可夫模型 条件随机场 Medical literature Risk event Hidden Markov model Maximum entropy Markov model Conditional random field
  • 相关文献

参考文献12

二级参考文献81

  • 1姜吉发.一种跨语句汉语事件信息抽取方法[J].计算机工程,2005,31(2):27-29. 被引量:12
  • 2周俊生,戴新宇,尹存燕,陈家骏.基于层叠条件随机场模型的中文机构名自动识别[J].电子学报,2006,34(5):804-809. 被引量:112
  • 3余鸿魁,张华平.基于角色标注的中文机构名识别[C].20th International Conference on Computer Processing of Oriental Languages, Shenyang, China, 2003.79 - 87. 被引量:2
  • 4[16]Hobbs J,Appelt D,Bear J et al.FASTUS:A Cascaded Finite-State Transducer for Extracting Information from Natural-Language Text[C].In:Roche,Schabes eds. Finite State Devices for Natural Language Processing, MIT Press,Cambridge MA, 1996 被引量:1
  • 5[17]Appelt D E.Introduction to Information Extraction[J].AI COMMUNICATIONS, 1999; 12(3) 被引量:1
  • 6[18]Yangarber R.Scenario Customization for Information Extraction[D].Ph D Thesis.New York University,2001-01 被引量:1
  • 7[19]Cowie J, Lehnert W.Information Extraction[J].Communications of the ACM, 1996;39(1) 被引量:1
  • 8[20]Grishman R Adaptive information extraction and sublangu age analysis[C].In:Proceedings of IJCAI-2001 Workshop on Adaptive Text Extraction and Mining,2001 被引量:1
  • 9[1]Applet D E,Israel D J.Introduction to Information Extraction Technology. A Tutorial for IJCAI-99,1999 被引量:1
  • 10[2]Gaizauskas R,Wilks Y.Information Extraction:Beyond Document Retrieval[J].Journal of Documentation, 1997 被引量:1

共引文献313

同被引文献64

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部