期刊文献+

利用高分一号卫星监测开封地区PM_(2.5) 被引量:6

Estimation of PM_(2.5) concentration from GF-1 data in Kaifeng City
下载PDF
导出
摘要 PM_(2.5)是影响开封地区空气质量的首要污染物,利用卫星遥感手段可以快速获得PM_(2.5)浓度的空间分布。通过采用过境开封市的GF-1卫星数据,获取气溶胶光学厚度,结合地面PM_(2.5)监测数据与边界层高度、相对湿度和气温等辅助数据,采用多元线性回归,建立了基于GF-1的PM_(2.5)遥感反演模型。研究表明,2015年6—9月GF-1数据反演得到的PM_(2.5)浓度与地面监测结果较为接近,且有较高的相关性;加入地理加权回归能明显提高模型精度,较好地反映PM_(2.5)的空间分布;但在PM_(2.5)浓度较高时,该模型会出现低估现象。 PM_(2.5) is the key air pollution for air quality of Kaifeng City. With remote sensing technology,the distribution of PM_(2.5) concentration could be determined quickly. In this paper,the authors collected the aerosol optical depth( AOD) of GF-1,height of planetary boundary layer( HPBL),relative humidity( RH) and air temperature( AT) over Kaifeng City and then,with multiple regression analysis,revised the coefficients of all variables. After that,the authors built the PM_(2.5) retrieving model from GF-1 in Kaifeng City. The validation from June to September in 2015 showed that the PM_(2.5) concentration from remote sensing was similar to that from four ground-level monitoring sites,and the correlation coefficient was higher than 0. 8. The result of geographically weighted regression( GWR) was obviously better than that of no GWR. Nevertheless,when PM_(2.5) concentration was high,the model would underestimate PM_(2.5) concentration.
出处 《国土资源遥感》 CSCD 北大核心 2017年第4期161-165,共5页 Remote Sensing for Land & Resources
基金 国家自然科学基金项目"多角度标量信号辅助多角度偏振算法反演陆地气溶胶"(编号:41301358)资助
关键词 高分一号 遥感 PM2.5 开封市 多元线性回归 GF-1 remote sensing PM2 5 Kaifeng City multiple regression method
  • 相关文献

参考文献7

二级参考文献59

  • 1SUN Lin1,2,SUN ChangKui1,LIU QinHuo2 & ZHONG Bo2 1Geomatics College,Shandong University of Science and Technology,Qingdao 266510,China,2State Key Laboratory of Remote Sensing Science,Chinese Academy of Sciences,Beijing 100101,China.Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data[J].Science China Earth Sciences,2010,53(S1):74-80. 被引量:14
  • 2吴兑,邓雪娇,毕雪岩,李菲,谭浩波,廖国莲.细粒子污染形成灰霾天气导致广州地区能见度下降[J].热带气象学报,2007,23(1):1-6. 被引量:285
  • 3.环境空气质量标准[S].[S].国家环境保护局,1996.. 被引量:9
  • 4中国环境监测总站.2013年1月74个城市空气质量状况月报[R].北京,2013. 被引量:2
  • 5Pope C A. Review:epidemiological basis for particulate air pollution health standards [ J ]. Aerosol Science and Technology,2000,32( 1 ) :4 - 14. 被引量:1
  • 6Pope C A, Dockery D W. Health effects of fine particu- late air pollution: Lines that connect [ J ]. Journal of the Air & Waste Management Association, 2006,56 ( 4 ) : 709 - 742. 被引量:1
  • 7Liu Y, Samat J A, Kilaru V, et al. Estimating ground- level PM2.5 in the eastern United States using satellite remote sensing[ J]. Environmental Science and Technol- ogy,2005,39 (4) :3269 - 3278. 被引量:1
  • 8Donkelaar A V, Martin R V, Park R J. Estimatingground-level PM2.5 using aerosol optical depth deter- mined from satellite remote sensing[ J]. Journal of Geo- physics Research, 2006,111 ( D21201 ) : 1 - 10. 被引量:1
  • 9中国环境监测总站.2013年2月74个城市空气质量状况月报[R].2013. 被引量:1
  • 10Remer L A, Kaufrnan Y J, Tanr6 D, et al. The MODIS aerosol algorithm, products, and validation [ J ]. Journal of the Atmospheric Sciences-Special Section, 2005,62 : 947 - 973. 被引量:1

共引文献312

同被引文献157

引证文献6

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部