期刊文献+

基于CNN及Bi-LSTM的无人机时序图像定位研究 被引量:4

UAV Sequential Image Localization Based on CNN and Bi-LSTM
下载PDF
导出
摘要 设计了一个浅层卷积神经网络来代替预训练模型中的全连接层,将预训练网络提取的CNN特征作为图像输入设计好的浅层CNN网络,对比微调预训练模型的方法,能够更好地适应航拍图像定位任务。为进一步提高航拍图像的定位准确率,利用无人机航拍图像时间连续的特点,通过在CNN的分类阶段加入Bi-LSTM网络,使网络在分类时能够以多张图像特征作为判断依据。实验表明,时序图像定位方法定位准确率稳定在0.89左右,对比单张图像定位方法准确率提升5%左右。 A shallow Convolution Neural Network (CNN) is designed to replace the fully-connected layer in the pre-training model. The CNN feature extracted by the pre-training network is taken as input image to the designed shallow CNN network. Compared with the fine-tuning method for the pre-training model, this method can better adapt to the aerial image localization tasks. In order to further improve the locating accuracy of aerial images, the Bi-LSTM network is added to the network at the CNN classification stage by use of the temporally-continuous characteristics of the UAV aerial image. Thus the features of multiple images can be taken as the criterion for the network classification. Experiments show that the accuracy of sequential image locating method reaches a stable level at around 0.89, and is improved by about 5% compared with the single-image locating method.
机构地区 空军航空大学
出处 《电光与控制》 北大核心 2017年第12期51-55,66,共6页 Electronics Optics & Control
基金 吉林省自然科学基金(20130101069JC)
关键词 无人机 航拍图像 图像分类 图像定位 预训练网络 CNN Unmanned Aerial Vehicle (UAV) aerial image image classification image localization pre-training network CNN
  • 相关文献

参考文献4

二级参考文献23

  • 1Femdndez-Delgado M, Cemadas E,Barro S, et al. Dowe Need Hundreds of Classifiers to Solve Real WorldClassification Problems? [J]. Journal of MachineLearning Research (SI 532-4435), 2014, 15(1):3133-3181. 被引量:1
  • 2Joachims T. Making Large-scale Support VectorMachine Learning Practical [C]// Advances in kernelmethods. USA: MIT Press, 1999: 169-184. 被引量:1
  • 3Harada T, Ushiku Y,Yamashita Y,et al. DiscriminativeSpatial Pyramid [C]// Computer Vision and PatternRecognition (CVPR), 2011 IEEE Conference on. USA:IEEE, 2011: 1617-1624. 被引量:1
  • 4S 6 nchez J, Perronnin F, Mensink T, et al. ImageClassification with the Fisher Vector; Theory andPractice [J]. International Journal of Computer Vision(S0920-5691), 2013, 105(3): 222-245. 被引量:1
  • 5Zhang C, Liu J, Tian Q, et al. Image Classification byNon-negative Sparse Coding, Low-rank and SparseDecomposition [C]// Computer Vision and PatternRecognition (CVPR), 2011 IEEE Conference on. USA:IEEE, 2011: 1673-1680. 被引量:1
  • 6Boureau Y L, Bach F, LeCun Y,et al. Learningmid-level features for recognition[C]//Computer Visionand Pattern Recognition (CVPR), 2010 IEEEConference on. USA:IEEE,2010: 2559-2566. 被引量:1
  • 7Lecun Y, Kavukcuoglu K, Farabet C. ConvolutionalNetworks and Applications in Vision [C]// Circuits andSystems (ISCAS), Proceedings of 2010 IEEEInternational Symposium on. USA: IEEE, 2010: 253-256. 被引量:1
  • 8Bouvrie J. Notes on Convolutional Neural Networks[R]// MIT-CBCL Technical Reports. Germany: SpringerInternational, 2006: 38-44. 被引量:1
  • 9Fischer A, Igel C. Training Restricted BoltzmannMachines: An Introduction [J]. Pattern Recognition(S0031-3203), 2014, 47(1): 25-39. 被引量:1
  • 10Tang Y, Salakhutdinov R, Hinton G. Robust BoltzmannMachines for Recognition and Denoising [C]// ComputerVision and Pattern Recognition (CVPR), 2012 IEEEConference on. USA: IEEE, 2012: 2264-2271. 被引量:1

共引文献81

同被引文献25

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部