期刊文献+

混合样本协同表示算法的人脸识别研究 被引量:6

Face recognition research based on variant samples and collaborative representation
下载PDF
导出
摘要 在人脸识别中,人脸图像受到表情、光照、遮挡、姿态变化、特别是训练样本数量的影响,而现实中经常只获得少量的训练样本,由于原始样本生成虚拟样本可以增加训练样本的数量,分析提出原始样本与轴对称样本融合的协同表示算法。首先生成镜像样本与轴对称样本,再在协同表示分类器下分类,最后加权值融合,分析不同权值下的人脸识别率。实验结果显示原始样本、镜像样本与轴对称样本融合能提高识别率,而原始样本与轴对称样本融合的识别率更加优越,较原始样本,识别率提高2%~9%,比原始样本与镜像样本融合高1%~5%。结果表明本文提出方法能有效提高人脸识别率。 For face recognition,the face image are affected by the variations of expression,lighting,occlusion,pose and especially the number of training samples.However,in practical application,we only have insufficient training samples.The collaborative representation algorithm of combining the original training samples with the axial-symmetry samples is proposed because the original training samples generate the corresponding virtual training samples to increase the number of training samples.Firstly,the original training samples generate the corresponding mirror samples and axial-symmetry samples.Secondly,the reconstruction errors are obtained by using collaborative representation based classification.Finally,the variant reconstruction errors are combined with different weighted number to compare face recognition rates.The experimental results show that the face recognition rates are increased by combining the original training samples with the mirror samples and the axialsymmetry samples.The face recognition rates of combining the original training samples with the axialsy-mmetry samples are 2%~9% and 1%~5% better than the original training samples and theoriginal training samples with the mirror samples respectively.It shows that the paper's method is effective in face recognition.
出处 《液晶与显示》 CAS CSCD 北大核心 2017年第12期987-992,共6页 Chinese Journal of Liquid Crystals and Displays
基金 四川理工学院科研项目(No.2015RC16)~~
关键词 人脸识别 镜像样本 轴对称样本 协同表示 权值融合 face recognition mirror samples axial-symmetry samples collaborative representation weight fusion
  • 相关文献

参考文献3

二级参考文献29

  • 1Turk M, Pentland A. Eigenfaces for recognition[J]. Cognitive Neuroscience, 1991,3(1):71-86. 被引量:1
  • 2Belhumeur P N, Hespanha J P, Kriegman D J, et al. Fisherfaces: recognition using class specific linear projection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(7):711-720. 被引量:1
  • 3He X, Yan S, Hu Y, et al. Learning a locality preserving subspace for visual recognition[C]//Proceedings of IEEE International Conference on Computer Vision. Nice, France: [s.n.], 2003:385-392. 被引量:1
  • 4Wang H, Leng Y, Wang Z, et al. Application of image correction and bit-plane fusion in generalized PCA based face recognition[J]. Pattern Recognition Letters, 2007,28(16):2352-2358. 被引量:1
  • 5Yang A, Wright J, Ma Y, et al. Feature selection in face recognition: a sparse representation perspective, technical[S]. Berkeley, USA: [s.n.], 2007. 被引量:1
  • 6Wright J, Yang A, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009,31(2):210-227. 被引量:1
  • 7Huang J Z, Huang X L, Metaxas D. Simultaneous image transformation and sparse representation recovery[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Anchorage, USA: [s.n.], 2008:1-8. 被引量:1
  • 8Yang M, Zhang L. Gabor feature based sparse representation for face recognition with gabor occlusion dictionary[C]//Proceedings of the 11th European conference on Computer vision: Part VI. Heraklion,Crete, Greece:[s.n.], 2010:448-462. 被引量:1
  • 9Yang M, Zhang L, Yang J, et al. Robust sparse coding for face recognition[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Providence, USA:[s.n.], 2010:625-632. 被引量:1
  • 10Zhang L, Yang M, Feng X. Sparse representation or collaborative representation: which helps face recognition[C]//Proceedings of IEEE International Conference on Computer Vision. Barcelona, Spain:[s.n.], 2011:471-478. 被引量:1

共引文献14

同被引文献23

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部