期刊文献+

Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study 被引量:2

Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study
原文传递
导出
摘要 The discharge and charge mechanisms of rechargeable Li-O2 batteries have been the subject of extensive investigation recently. However, they are not fully understood yet. Here we report a systematic study of the morphological transition of Li2O2 from a single crystalline structure to a toroid like particle during the discharge-charge cycle, with the help of a theoretical model to explain the evolution of the Li2O2 at different stages of this process. The model suggests that the transition starts in the first monolayer of Li2O2, and is subsequently followed by a transition from particle growth to film growth if the applied current exceeds the exchange current for the oxygen reduction reaction in a Li-O2 cell. Furthermore, a sustainable mass transport of the diffusive active species (e.g., O2 and Li+) and evolution of the underlying interfaces are critical to dictate desirable oxygen reduction (discharge) and evolution (charge) reactions in the oorous carbon electrode of a Li-O2 cell. The discharge and charge mechanisms of rechargeable Li-O2 batteries have been the subject of extensive investigation recently. However, they are not fully understood yet. Here we report a systematic study of the morphological transition of Li2O2 from a single crystalline structure to a toroid like particle during the discharge-charge cycle, with the help of a theoretical model to explain the evolution of the Li2O2 at different stages of this process. The model suggests that the transition starts in the first monolayer of Li2O2, and is subsequently followed by a transition from particle growth to film growth if the applied current exceeds the exchange current for the oxygen reduction reaction in a Li-O2 cell. Furthermore, a sustainable mass transport of the diffusive active species (e.g., O2 and Li+) and evolution of the underlying interfaces are critical to dictate desirable oxygen reduction (discharge) and evolution (charge) reactions in the oorous carbon electrode of a Li-O2 cell.
出处 《Nano Research》 SCIE EI CAS CSCD 2017年第12期4327-4336,共10页 纳米研究(英文版)
关键词 rechargeable Li-O2 battery ELECTROCATALYST nanocomposite lithium peroxide rechargeable Li-O2 battery,electrocatalyst,nanocomposite,lithium peroxide
分类号 O [理学]
  • 相关文献

参考文献4

二级参考文献29

  • 1Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1-5. 被引量:1
  • 2Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29. 被引量:1
  • 3Bruce, P. G.; Hardwick, L. J.; Abraham, K. M. Lithium-air and lithium-sulfur batteries. MRS Bull. 2011, 36, 506-512. 被引量:1
  • 4Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A. A critical review of Li/air batteries. J. Electrochem. Soc. 2012, 159, R1- R30. 被引量:1
  • 5Lu, J.; Li, L.; Park, J.-B.; Sun, Y.-K.; Wu, F.; Amine, K. Aprotic and aqueous LifO2 batteries. Chem. Rev. 2014, 114 5611-5640. 被引量:1
  • 6Feng, L.; Li, K.; Chang, J.; Liu, C.; Xing, W. Nanostructured PtRu/C catalyst promoted by cop as an efficient and robust anode catalyst in direct methanol fuel cells. Nano Energy 2015, 15, 462-469. 被引量:1
  • 7Lei, Y.; Lu, J.; Luo, X.; Wu, T.; Du, P.; Zhang, X.; Ren, Y.; Wen, J.; Miller, D. J.; Miller, J. T. et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: Application for rechargeable lithium-O2 battery. Nano Lett. 2013, 13, 4182-4189. 被引量:1
  • 8Lu, J.; Lei, Y.; Lau, K. C.; Luo, X.; Du, P.; Wen, J.; Assary, R. S.; Das, U.; Miller, D. J.; Elam, J. W. et al. A nanostructured cathode architecture for low charge overpotential in lithium- oxygen batteries. Nat. Commun. 2013, 4, 2383. 被引量:1
  • 9Lu, Y. C.; Xu, Z.; Gasteiger, H. A.; Chen, S.; Hamad- Schifferli, K.; Shao-Horn, Y. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 2010, 132, 12170- 12171. 被引量:1
  • 10Luo, X.; Piernavieja-Hermida, M.; Lu, J.; Wu, T.; Wen, J.; Ren, Y.; Miller, D.; Fang, Z. Z.; Lei, Y.; Amine, K. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: An effective electrochemical catalyst for Li-O2 battery. Nanotechnology 2015, 26, 164003. 被引量:1

共引文献16

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部