期刊文献+

基于能量有效的水下分布式粒子滤波跟踪算法

Underwater distributed particle filtering tracing algorithm based on energy efficiency
下载PDF
导出
摘要 为降低水下无线传感器网络目标跟踪算法能耗并提高定位精度,提出基于能量有效的分布式粒子滤波跟踪算法(EEPF算法)。EEPF算法通过能量有效的最优分布式动态成簇机制和启发式能量有效的调度算法来平衡水下节点间的能耗,延长网络生存期,并在预测、滤波、重采样阶段对粒子滤波算法进行改进,在保障期望目标跟踪精度的同时降低了运算能耗。仿真结果表明,EEPF算法是一种轻量级的能量有效的目标跟踪算法,该算法能耗低,网络存活时间长,且跟踪精度较传统粒子滤波算法有了较大提高。 In order to reduce the energy consumption and improve the tracking accuracy of the target tracing algorithm for underwater WSN,an energy-efficient distributed particle filtering tracing algorithm for three-dimensional wireless sensor networks is proposed. The algorithm is used to balance the energy consumption among the underwater sensor nodes and prolong the network lifespan by means of the energy-efficient optimal distributed dynamic clustering mechanism and heuristic energy-efficient scheduling algorithm. The particle filtering algorithm is improved in the stages of forecasting,filtering and resampling,which can reduce the energy consumption in operation while maintaining the expected target tracking precision. The simulation results show that the algorithm is a lightweight energy-efficient target tracing algorithm,has low energy consumption,long network lifespan,and higher tracking accuracy than the traditional particle filtering algorithm.
作者 毛玉明
出处 《现代电子技术》 北大核心 2017年第23期23-26,共4页 Modern Electronics Technique
基金 山东省自然科学基金(BS2015DX007) 山东省计算机网络重点实验室开放课题(2015001)
关键词 能量有效 粒子滤波 跟踪算法 目标跟踪 efficient energy particle filtering tracing algorithm target tracing
  • 相关文献

参考文献6

二级参考文献93

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2邹冈,石章松,刘忠.传感器网络中的分布式粒子滤波被动跟踪算法比较研究[J].传感技术学报,2007,20(6):1344-1348. 被引量:8
  • 3Chong Chee-yee, Kumar S P. Sensor Networks: Evolution, Opportunities, and Challenges [ J ], Proc. of the IEEE, 2003, 91 (8) :1247 - 1256. 被引量:1
  • 4Li D, Wong K D, Hu Y H, et al. Detection, Classification, and Tracking of Targets [ J ]. IEEE Signal Processing Magazine, 2002, 19(2) : 17 -29. 被引量:1
  • 5Kim W, Mechitov K, Choi J Y, et al. On Target Tracking with Binary Proximity Sensors [ C ]//Proceedings of 4th Interna-tional Conference on Information Processing in Sensor Networks, Los Angeles, USA, 2005 : 301 -308. 被引量:1
  • 6Mechitov K, Sundresh S, Kwon Y, et al. Cooperative Tracking with Binary Detection Sensor Networks [ C ]//Proceedings of 1st Intemational Conference on Embedded Networked Sensor Systems, Los Angeles, USA, 2003 : 332 -347. 被引量:1
  • 7Djuric P M, Vemula M, Bugallo M F. Target Tracking by Particle Filtering in Binary Sensor Networks [ J ]. IEEE Transactions on Signal Processing, 2008, 56(6): 2229 -2238. 被引量:1
  • 8Jing T, Hichem S, Cedric R. Binary Variational Filtering for Target Tracking in Sensor Networks [ C ]//2007 IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, USA, 2007:685 -659. 被引量:1
  • 9Yang Lizhi, Feng Chuan, Jerzy W. Rozenblit, et al. Adaptive Tracking in Distributed Wireless Sensor Networks [ C ]//Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems, Postdam, Germany , 2006:685-689. 被引量:1
  • 10Sheng Xiaohong,Hu Yuhen, Maximum Likelihood Multiple-Source Localization Using Acoustic Energy Measurements with Wireless Sensor Networks [ J ]. Transactions on Signal Processing, 2005, 53(1): 44 -53. 被引量:1

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部