摘要
Medical models, or "phantoms," have been widely used for medical training and for doctor-patient interactions. They are increasingly used for surgical planning, medical computational models, algorithm verification and validation, and medical devices development. Such new applications demand high-fidelity, patient-specific, tissue-mimicking medical phantoms that can not only closely emulate the geometric structures of human organs, but also possess the properties and functions of the organ structure. With the rapid advancement of three-dimensional (3D) printing and 3D bioprinting technologies, many researchers have explored the use of these additive manufacturing techniques to fabricate functional medical phantoms for various applications. This paper reviews the applications of these 3D printing and 3D bioprinting technologies for the fabrication of functional medical phantoms and bio-structures. This review specifically discusses the state of the art along with new developments and trends in 3D printed functional medical phantoms (i.e., tissue-mimicking medical phantoms, radiologically relevant medical phantoms, and physiological medical phantoms) and 3D bio-printed structures (i.e., hybrid scaffolding materials, convertible scaffolds, and integrated sensors) for regenerated tissues and organs.
医学模型或模具已广泛应用于医学培训和医患互动领域,同时也日益应用于手术规划、医学计算模型、算法核实和验证以及医疗器械的开发等方面。这种新应用需要高保真度、患者特异性及模拟组织结构的医学模具,其不仅能够模拟人体器官的几何结构,而且还具有器官的功能。随着三维(3D)打印和3D生物打印技术的快速发展,许多研究人员已经开始使用增材制造技术来生产具有多种功能的医学模具。本文综述了3D打印和3D生物打印技术在制作功能性医学模具和生物结构方面的应用。特别讨论了3D打印功能性医学模具(即组织模拟医学模具、放射性医学模具和生理医学模具)及被用于再生组织和器官的3D生物打印模具的制备(即混合模式支架材料、可转换支架和集成传感器)工艺、发展现状以及未来发展趋势。