期刊文献+

一类新型动态多目标鲁棒进化优化方法 被引量:18

A Novel Dynamic Multi-objective Robust Evolutionary Optimization Method
下载PDF
导出
摘要 传统动态多目标优化问题(Dynamic multi-objective optimization problems,DMOPs)的求解方法,通常需要在新环境下,通过重新激发寻优过程,获得适应该环境的Pareto最优解.这可能导致较高的计算代价和资源成本,甚至无法在有限时间内执行该优化解.由此,提出一类寻找动态鲁棒Pareto最优解集的进化优化方法.动态鲁棒Pareto解集是指某一时刻下的Pareto较优解可以以一定稳定性阈值,逼近未来多个连续动态环境下的真实前沿,从而直接作为这些环境下的Pareto解集,以减小计算代价.为合理度量Pareto解的环境适应性,给出了时间鲁棒性和性能鲁棒性定义,并将其转化为两类鲁棒优化模型.引入基于分解的多目标进化优化方法和无惩罚约束处理方法,构建了动态多目标分解鲁棒进化优化方法.特别是基于移动平均预测模型实现了未来动态环境下适应值的多维时间序列预测.基于提出的两类新型性能评价测度,针对8个典型动态测试函数的仿真实验,结果表明该方法得到满足决策者精度要求,且具有较长平均生存时间的动态鲁棒Pareto最优解. Traditional methods solving dynamic multi-objective optimization problems (DMOPs) often trigger the evolution process again to find the Pareto-optimal solutions as soon as new environment appears. This may lead to larger computation and resources costs, even unable to perform the optimum solution in the limited time. Therefore, a novel evolutionary optimization method is proposed looking for dynamic robust Pareto-optimal solution sets, which are the Pareto-optimal solutions for certain enviromnent. They can approximate to the true Pareto fronts in following consecutive dynamic environments along a certain satisfaction threshold, and directly be used as Pareto solutions of these environments so as to reduce the computation cost. Two metrics including time robustness and performance robustness are presented to measure the environmental adaptability of Pareto-optimal solutions. Subsequently, they are transformed into two kinds of robust optimization models. Multi-objective evolutionary algorithm based on decomposition and penalty-parameter less constraint handling method are introduced to form the decomposition-based dynamic multi-objective robust evolutionary optimization method. Especially, a moving average prediction model is adopted to realize multi-dimensional time series prediction of these solutions. In term of eight benchmark functions and two novel metrics, the simulation results indicate that the proposed method can obtain the robust Pareto-optimal solutions meeting the need of decision makers with more average survive time.
出处 《自动化学报》 EI CSCD 北大核心 2017年第11期2014-2032,共19页 Acta Automatica Sinica
基金 国家重点基础研究发展计划(973计划)(2014CB046300) 国家自然科学基金(61573361) 中国矿业大学创新团队(2015QN003)资助~~
关键词 动态多目标优化 进化算法 鲁棒Pareto最优解 鲁棒生存时间 Dynamic multi-objective optimization, evolutionary algorithm, robust Pareto optimal solution, robust sur-vival time
  • 相关文献

参考文献3

二级参考文献18

  • 1姚新,徐永.Recent Advances in Evolutionary Computation[J].Journal of Computer Science & Technology,2006,21(1):1-18. 被引量:30
  • 2Farina M, Deb K, Amato P. Dynamic multiobjective optimization problems: Test cases, approximations, and applications EJ~. IEEE Trans on Evolutionary Computation, 2004, 8(5): 425-442. 被引量:1
  • 3Greeff M, Engelbrecht A P. Solving dynamic multi objective problems with vector evaluated particle swarm optimization [C] //Proc of Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 2008 : 2917-2924. 被引量:1
  • 4Talukder AKMKA, Kirley M. A pareto following variation operator for evolutionary dynamic multi-objective optimization [C] //Proc of Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 2008:2270-2277. 被引量:1
  • 5ChiKeong G, Chen T K. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization [J]. IEEE Trans on Evolutionary Computation, 2009, 13(1): 103-127. 被引量:1
  • 6Potter M A. The design and analysis of a computational model of cooperative coevolution [D]. Fairfax, VA: George Mason University, 1997. 被引量:1
  • 7van den Bergh F, Engelbreeht A P. A cooperative approach to particle swarm optimization [J].IEEE Trans on Evolutionary Computation, 2004, 8(3): 225-239. 被引量:1
  • 8van den Bergh F, Engelbreeht A P. Effect of swarm size on cooperative particle swarm optimizaters [C] //Proc of the Genetic and Evolutionary Computation. New York: ACM, 2001 : 1-8. 被引量:1
  • 9Baskar S, Suganthan P N. A novel concurrent particle swarm optimization [C] //Proc of Congress on Evolutionary Computation. Piscataway, NJ; IEEE, 2004: 792-796. 被引量:1
  • 10Liu Jing. Research on coevolutionary evolutionary algorithm and its application [D]. Xi'an: Xidian University, 2004. 被引量:1

共引文献33

同被引文献168

引证文献18

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部