期刊文献+

基于多元线性回归模型的土壤养分空间预测——以陕西省蓝田县农耕区为例 被引量:17

Prediction of Spatial Distribution of Soil Nutrients Based on Multiple Linear Regression Model——a Case Study in Lantian County of Shaanxi Province
原文传递
导出
摘要 以陕西省蓝田县农耕区为例,基于土壤类型、地形、植被、人类活动等土壤养分影响因子,采用多元线性回归预测方法,对土壤养分分布进行空间预测。通过数据标准化和分类统计均值法将所有影响因子统一为相对度量值,根据影响因子与土壤养分含量的相关性显著程度,筛选合适的因子构建回归模型,最后使用随机抽取的验证样本集,计算了预测结果误差。结果表明:多元线性回归预测结果虽然与Kriging法预测结果宏观上具有基本一致的空间分布趋势,但是它克服了传统插值方法的不合理突变问题,更加精细地描述了土壤养分空间分布特征;其平均误差和均方根误差小于Kriging插值法,可作为集成多元影响因子对土壤养分空间分布预测的有效方法。分析发现,研究区内洪积土、水稻土、塿土、立茬土等土壤类型分布区,以及地势较低、坡度在0~8°之间、坡向为东坡、东南坡,等水热组合条件良好的区域养分含量较高。该研究可以为土壤资源合理利用、土地的科学管理以及测土施肥技术提供重要依据。 Taking Lantian agricultural cropping area as an example, based on the factors affecting the formation of soil nutrition including soil type, terrain, plants, and as well as human activities, and adopting multiple linear regression prediction, we obtained the spatial distribution of soil nutrients. All the influencing factors were unified as the relative measurement by the method of data standard and classified statistics, and appropriating factors were selected by the level of significant correlation degree to construct the model. Finally, we calculated the Mean-Percent Error (MPE) and Root Mean Square Error (RMSE) for 500 randomly selected sampling points. The results indicated that the two methods exhibited similar accuracy and spatial patterns at a large scale. The prediction performance of multiple linear regression was better than that of Kriging. The former described more accurately the spatial distribution of soil nutrients. This suggested that the multiple linear regression was an efficient method for predicting the spatial distribution of soil nutrients. Areas with high values of soil nutrient contents in the investigation region were mainly associated with soil types such as diluvial soil, paddy soil, and Lou soil and better hydro-thermal conditions such as lowly terrain, the slope gradient of 0 - 8°, the aspect of east and southeast. This study would provide an important support for soil resource management, soil monitoring and fertilization.
出处 《土壤通报》 CAS 北大核心 2017年第5期1102-1113,共12页 Chinese Journal of Soil Science
基金 教育部人文社会科学研究规划项目(10YJA910010) 陕西省农业科技攻关项目(2011K02-11) 西安市科技计划项目(NC150201 NC1402) 西北大学"211工程"研究生自主创新项目(YZZ15013 YZZ14013)资助
关键词 空间预测 多元线性回归 影响因子 土壤养分 Spatial prediction Multiple linear regression Soil factor Soil nutrient
  • 相关文献

参考文献35

二级参考文献544

共引文献1736

同被引文献319

引证文献17

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部