期刊文献+

3D nickel-cobalt diselenide nanonetwork for highly efficient oxygen evolution 被引量:8

3D nickel-cobalt diselenide nanonetwork for highly efficient oxygen evolution
原文传递
导出
摘要 Active, stable and low-cost oxygen evolution reaction(OER) catalyst for electrochemical water splitting is key to efficient energy conversion and storage. Here, we report a three-dimensional(3D) nanonetwork as noble-metal-free electrode consisting of nickel cobalt diselenide(NiCoSe_2) nanobrush arrays on Ni foam(NF) through the initial hydrothermal reaction and subsequent thermal selenization process. Introducing ammonium fluoride as surface controller, different NiCoSe_2 hierarchical architecture can be modulated from nanorods, nanobrush to nanosheets. The unique brush-like NiCoSe_2 possesses high surface area for mass transfer, rough surface with rich active sites, 3D nanostructure preventing the accumulation of O2 bubbles. Compared to NiCoSe_2 nanorods/NF, NiCoSe_2 nanosheets/NF and commercial Ru O2,NiCoSe_2 nanobrush/NF exhibits an enhanced OER performance in alkaline media to reach a low overpotential of 274 m V at the current density of 10 m A/cm2, small Tafel slope and a long-term stability. The developed 3D nanonetwork highlights the nanoscale engineering and offers a promising alternative to noble metal catalysts for electrochemical water oxidation. Active, stable and low-cost oxygen evolution reaction (OER) catalyst for electrochemical water splitting is key to efficient energy conversion and storage. Here, we report a three-dimensional (3D) nanonetwork as noble-metal-free electrode consisting of nickel cobalt diselenide (NiCoSe2) nanobrush arrays on Ni foam (NF) through the initial hydrothermal reaction and subsequent thermal selenization process. Introducing ammonium fluoride as surface controller, different NiCoSe2 hierarchical architecture can be modulated from nanorods, nanobrush to nanosheets. The unique brush-like NiCoSe2 possesses high surface area for mass transfer, rough surface with rich active sites, 3D nanostructure preventing the accumulation of 02 bubbles. Compared to NiCoSe2 nanorods/NF, NiCoSe2 nanosheets/NF and commercial RuO2, NiCoSe2 nanobrush/NF exhibits an enhanced OER performance in alkaline media to reach a low overpotential of 274 mV at the current density of 10 mA/cm^2, small Tafel slope and a long-term stability. The developed 3D nanonetwork highlights the nanoscale engineering and offers a promising alternative to noble metal catalysts for electrochemical water oxidation,
出处 《Science Bulletin》 SCIE EI CAS CSCD 2017年第20期1373-1379,共7页 科学通报(英文版)
基金 supported by the National Natural Science Foundation of China (21475007 and 21675009) the Fundamental Research Funds for the Central Universities (buctrc201608 and buctrc201720)
关键词 Nickel-cobalt diselenide ELECTROCATALYST Nanonetwork Oxygen evolution reaction Nickel-cobalt diselenide Electrocatalyst Nanonetwork Oxygen evolution reaction
  • 相关文献

参考文献7

二级参考文献60

  • 1Morales-Guio, C. G.; Sterna, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555-6569. 被引量:1
  • 2Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180. 被引量:1
  • 3Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060-2086. 被引量:1
  • 4Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostrucuares for energy conversion applications.Energy Environ. Sci. 2014, 7, 3519-3542. 被引量:1
  • 5Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, 1.; Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909-913. 被引量:1
  • 6Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473. 被引量:1
  • 7Skoulason, E.; Karlberg, G. S.; Rossmeisl, J.; Bligaard, T.; Greeley, J.; J6nsson, H.; Norskov, J. K. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(Ⅲ) electrode. Phys. Chem. Chem. Phys. 2007, 9, 3241-3250. 被引量:1
  • 8Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399404. 被引量:1
  • 9Ledendecker, M.; Krick Calder6n, S.; Papp, C.; Steinriick, H. P.; Antonietti, M.; Shalom, M. The synthesis of nano- structured NisP4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem., Int. Ed. 2015, 127, 12538 -12542. 被引量:1
  • 10Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H.-J.; Baek, J.-B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823-4892. 被引量:1

共引文献78

同被引文献22

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部