期刊文献+

微波在半导体退火工艺中的应用 被引量:1

Application of Microwave in Semiconductor Annealing Process
下载PDF
导出
摘要 针对传统快速热处理工艺(RTP)在退火过程中引起杂质再扩散导致难以制作浅结器件的问题,采用了微波退火的方式进行退火,有效降低了热预算,能够解决杂质再扩散的问题。相比传统RTP退火,微波的退火机理具有特殊性,其不仅有微波的热效应还有微波的非热效应,使微波退火能够在较低的温度下实现杂质激活和晶格修复。实验表明,在注入能量为15 keV、注入剂量为1×1015 cm-2时,P31注入的样品经微波退火后其方块电阻均值小于200Ω/,片内不均匀度小于3%,最高退火温度仅约为400℃,热预算远低于传统RTP退火。该实验结果表明,微波退火的方法在浅结器件的制备工艺中有较大的应用潜力。 Due to the dopant re-diffusion caused by annealing process of the traditional rapid ther- mal process (RTP), the shallow junction devices cannot be fabricated easily. The annealing was carried out by the microwave annealing to effectively reduce the thermal budget and solve the problem of dopant re-diffusion. Compared to the traditional RTP annealing, the microwave an- nealing has thermal microwave effect and non-thermal microwave effect, which can realize impu- rity activation and lattice restoration at low temperature. The experiments show that when the implantation energy and implantation dose are 15 keV and 1 × 10^15 cm^-2 respectively, the average square resistance and non-uniformity of the implanting p31 samples annealed by the microwave an- nealing are less than 200 Ω/□ and less than 3 % respectively, and the highest annealing tempera- ture is only about 400 ℃. The thermal budget of the microwave annealing is far lower than the traditional RTP annealing. The experimental results show that the microwave annealing method has great potential in the preparation process of the shallow junction devices.
出处 《微纳电子技术》 北大核心 2017年第12期835-839,共5页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(61474139) 国家重大科技专项资助项目(2017ZX02201002)
关键词 微波 退火 离子注入 快速热处理工艺(RTP) 热预算 microwave annealing ion implantation rapid thermal process ( RTP )
  • 相关文献

参考文献2

二级参考文献29

  • 1RanerKD, StrauseCR,J. Org. Chem., 1992,57,6231 - 6234 被引量:1
  • 2ChriscopherRS, Robert WT, A ust. J. Chem., 1995,48, 1665- 1692 被引量:1
  • 3Ben - Zu Wan, Chih - Yu Kao,Wu - Hsun Cheag:Ind Eng.Chem. Res .2001,40,509 - 514 被引量:1
  • 4Campanelli,J.R;Cooper,D. G.J Appl Polym Sol 1993,48,443 被引量:1
  • 5Campanelli J R,Cooper D G, Kammal M R.J.Appl. Poly.Sci, 1994,53,985 - 991 被引量:1
  • 6ColeKS, ColeRH, J. Chem. Phys., 1941,9,341 - 351 被引量:1
  • 7FrohlichH, Theory of Dielectrics, 2ndedit., Oxford University Press,London, 1958.24,255 - 258 被引量:1
  • 8BoseAK, ManhasMS, GhoshMetal., Heteroeyelees, 1990, 30,741 - 744 被引量:1
  • 9GedyeRN, SmithFE, WestawayKC, Cam. J. Chem., 1988,66,17 -26 被引量:1
  • 10SunWC. GuyPM, JahnsenJHetal. ,J. Org. Chem., 1988.53.4414 - 4416 被引量:1

共引文献33

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部