期刊文献+

基于ABC-NB的慢性病诊断分类研究 被引量:1

Research on Diagnostic Classification of Chronic Diseases Based on ABC-NB
下载PDF
导出
摘要 在医疗领域,医生做出有效正确的决策非常重要,为了提高医生诊断的准确性,避免诊断结果受到医生的直觉、潜意识和自身知识不全面等因素的干扰而造成误判;提出了将改进的ABC-NB算法应用于慢性病诊断领域,以提高诊断效率,减少误判几率;将基于改进尺度因子的人工蜂群算法应用于慢性病特征的选择,对数据进行降维,剔除冗余、无关的特征,提高收敛速度,增强算法搜索全局最优解的能力;接着将预处理后的数据各特征值进行训练和学习生成贝叶斯分类器,构建预测模型;预测模块将诊断结果显示出来供医护人员参考,辅助进行诊断和决策;实验表明该模型具有很好的柔性和鲁棒性,能够稳定的计算出慢性病的概率,有效的辅助医护人员进行诊断。 In the medical field, it is very important for doctors to make effective and correct decision--making. In order to improve the accuracy of doctors" diagnosis and avoid the misdiagnosis of doctors' intuition, subconscious and incomplete knowledge. ABC--NB algorithm is used in the fiel.d of chrorfic disease diagnosis to improve the diagnostic efficiency and reduce the chance of misjudgment. The artificial bee colo- ny algorithm based on improved scale factor is applied to the selection of chronic disease characteristics, and the data are dimensioned, the re- dundant and irrelevant features are removed, the convergence speed is improved, and the algorithm is applied to search the global optimal so- lution. Then, the eigenvalues of the pre--processed data are trained and learned to generate the Bayesian classifier to construct the prediction model. The prediction module displays the diagnostic results for medical staff to assist in the diagnosis and decision making. Experiments show that the model has good flexibility and robustness, can have a stable calculation of the probability of diagnosis of chronic diseases, and it is effective for the diagnosis of medical staff.
出处 《计算机测量与控制》 2017年第11期197-200,共4页 Computer Measurement &Control
关键词 慢性病诊断 特征选择 人工蜂群算法 朴素贝叶斯分类器 diagnosis of chronic diseases feature selection ABC naive Bayesian classifier
  • 相关文献

参考文献7

二级参考文献71

  • 1张璐,孔灵芝.预防慢性病:一项至关重要的投资——世界卫生组织报告[J].中国慢性病预防与控制,2006,14(1):1-4. 被引量:171
  • 2陈建勋,马良才,于文龙,周正譶,周智凯.“健康管理”的理念和实践[J].中国公共卫生管理,2006,22(1):7-10. 被引量:147
  • 3Langley P.Seleetion of relevant features in machine learning[J].In:Proe.AAAI Fall Symposium on Relevanee,1994:140-144. 被引量:1
  • 4Langley P,Iba W.Average-case analysis of a nearest neighbour algorithm[C] //Proceedings of the Thirteenth International Joint Con-Ferenee on Artifieial Intelligence,1993:889-894. 被引量:1
  • 5Jain A,Zongker D.Feature seleetion:evaluation,application,and Sniall sample pedortnanee[J].IEEE transactions on pattern analysis and machine intelligence,1997,19(2):153-158. 被引量:1
  • 6Xing E,Jordan M,Karp R.Feature seleetion for high-dimensional genomic microarray data[C] //Intl.conf.on Machine Learning,2001:601-608. 被引量:1
  • 7Davies S,Russl S.Np-completeness of searehes for smallest Pos Sible feature sets[C] // In:Proc.Of the AAAI Fall 94Symposium on Relevanee,1994:37-39. 被引量:1
  • 8Narendra PM,Fukunaga K.A branch and bound algorithm for feature subset selection[J].IEEE Transactions on Computers,1997(26):917-922. 被引量:1
  • 9Kittler J,Feature set search algorithms,in:C.H.Chen,Pattern Recognition and Signal Processing,Sijthoff and Noordhoff,1978:41-60. 被引量:1
  • 10Pudil P,Novovicova N,Kittler J.Floating search method[J].Pattern Recognition Letters,1994(15):1119-1125. 被引量:1

共引文献149

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部