期刊文献+

时空耦合谱元方法求解刚性圆柱体表面的声传播问题

Time-Space Coupled Spectral Element Method for Acoustic Wave Propagation on a Rigid Cylinder
下载PDF
导出
摘要 以刚性圆柱体表面均匀分布若干单极子质量源的声传播问题为求解目标,在极坐标系中构建时空耦合模型。基于Least-Squares变分,在时间及空间方向同时采用Chebyshev谱元方法进行离散,将原来极坐标系中的问题转化到柱坐标系中进行求解,并通过数值实验验证了模型的正确性;进一步应用时空耦合模型求解刚性圆柱体表面声传播问题,在计算区域外边界采用C-E-M吸收边界条件。研究结果显示:时空耦合谱元模型通过时间及空间计算精度的匹配,能够获得高精度的数值解;增加时间及空间方向的单元数及单元内的插值阶数均能提高计算精度,且提高插值阶数的方法具有指数阶收敛特性;所构建的时空耦合模型能够稳定求解刚性圆柱体表面的声传播问题,将C-E-M吸收边界条件改写为第一类边界条件并应用于时空耦合模型依然有效。研究内容对构建高精度的计算气动声学求解方法具有指导意义。 A coupled time-space model is established in a polar coordinate to obtain the propagation characters from some monopole sources distributed evenly on a rigid cylinder. Following the least-squares variational principle, Chebyshev spectral element method is chosen to discretize both the time and space domains and the problem in polar coordinate is transformed into cylindrical coordinate. The validity of this model is verified by the numerical experiment, and the acoustic wave propagation on a rigid cylinder with C-E-M absorbing boundary condition on the edge of computational domain is revealed. The results show that a high-order accuracy can be obtained by the coupled time-space model via matching the numerical accuracy between time and space. The numerical accuracy can be improved by increasing the number of the elements or the interpolation order in each element of time and space. An exponential accuracy rate can be obtained with the increasing interpolation order. The acoustic wave propagation on the surface of a rigid cylinder can be simulated stably by this model, and the C-E-M absorbing boundary condition rewritten as the Dirichlet boundary condition still works well.
作者 王亚洲 秦国良 包振忠 和文强 穆毅伟 WANG Yazhou;QIN Guoiiang;BAO Zhenzhong;HE Wenqiang;MU Yiwei(School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2017年第7期24-29,97,共7页 Journal of Xi'an Jiaotong University
基金 国家重点基础研究发展计划资助项目(2012CB026004)
关键词 时空耦合 Least-Squares变分 极坐标系 谱元方法 吸收边界 time-space coupled least-squares variation polar coordinate spectral elementmethod absorbing boundary
  • 相关文献

参考文献3

二级参考文献35

  • 1许靖,秦国良,朱昌允.谱元方法求解含吸收边界的声学问题[J].西安交通大学学报,2007,41(7):875-878. 被引量:3
  • 2LIGHTHILL M J.On sound generated aerodynami-cally:general theory[J].Proc Roy London Soc:Mathematical and Physical Science:1952,211(1107):564-587. 被引量:1
  • 3LELE S K.Compact finite difference schemes with spectral like resolution[J].Journal of Computational Physics,1992,103(1):16-42. 被引量:1
  • 4JAE W K,DUCK J L.Optimized compact finite difference schemes with maximum resolution[J].AIAA Journal,1996,34(5):887-893. 被引量:1
  • 5WU S W,LIAN S H,HSU L H.A finite element model for acoustic radiation[J],Journal of Sound and Vibration,1998,215(3):489-498. 被引量:1
  • 6HARTEN A,ENGQUIST A,OSHER S,et al.Uniformly high-order accuracy essentially non-oscillatory schemes:III[J].Journal of Computational Physics,1987,71(2):231-323. 被引量:1
  • 7TAM C K W,WEBB J C.Dispersion-relation-preserving finite difference schemes for computational acous-tics[J].Journal of Computational Physics,1993,107 (2):262-281. 被引量:1
  • 8TAM C K W.Computational aeroacoustics:issues and methods[J].AIAA Journal,1995,33(10):1788-1796. 被引量:1
  • 9LELE S K.Computational aeroacoustics:a review[C/ OL].Aerospace Science Meeting and Exhibit[2008-09-05].http://www.aiaa.org/content cfm? pageld. 被引量:1
  • 10PATERA A T.A spectral element method for fluid dynamics:laminar flow in a channel expansion[J].Journal of Computational Physics,1984,54(3):468-488. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部