期刊文献+

一类具有饱和传染率的SVEIR传染病模型的定性分析

An analysis of a SVEIR epidemic model with saturation incidence rate
下载PDF
导出
摘要 建立带有接种的SVEIR传染病模型,得到基本再生数R_0,并讨论平衡点的存在性.通过构造Lyapunov函数及利用LaSalle不变原理,研究连续接种对传染病传播的影响.发现传染病模型的全局稳定性由基本再生数R0决定,当R0<1时,无病平衡点全局渐近稳定.当R0>1时,地方病平衡点全局渐近稳定.接种是控制疾病传播的有效途径. The SVEIR infectious disease model with vaccination is established,the basic repro-duction number is obtained,and the existence of the equilibrium point is discussed.The effects of continuous vaccination on infectious diseases by constructing Lyapunov function and the La-Salle's invariance principle.It is pointed out that the basic reproduction number R 0 determines the global stability of the epidemic model.When R 0〈1,the disease-free equilibrium is globally asymptotically stable.When R 0〉 1,the endemic equilibrium is globally asymptotically stable. The results show that continuous vaccination is an effective way to control the disease.
作者 吴梦媛 孙法国 陈瑶 WU Mengyuan;SUN Faguo;CHEN Yao(School of Science,Xi'an Polytechnic University,Xi'an710048,China)
出处 《西安工程大学学报》 CAS 2017年第5期706-712,共7页 Journal of Xi’an Polytechnic University
基金 陕西省教育厅自然科学专项基金资助项目(15JK1295)
关键词 连续接种 饱和发生率 基本再生数 全局稳定性 continuous vaccination saturation incidence rate basic reproduction number global stability
  • 相关文献

参考文献3

二级参考文献11

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部