摘要
考虑区间直觉犹豫模糊集中元素隶属度不确定这一特征,给出了四种不同的区间直觉犹豫模糊粒基数概念,并在此基础上构造了相关的区间直觉犹豫模糊粗糙熵、信息熵等概念.提出了区间直觉犹豫模糊粒度结构距离的概念,基于区间直觉犹豫模糊粒度结构距离定义了一种新的区间直觉犹豫模糊粒度结构的偏序关系,讨论区间直觉犹豫模糊粗糙熵、信息熵的偏序性.通过实例验证了相关定理和定义的正确性.
Considering the uncertainty of membership degrees of the element in the interval-valued intu- itionistic hesitant fuzzy, four different concepts about cardinalities of interval-valued intuitionistic hesitant fuzzy granule are given, and corresponding concepts of interval-valued intuitionistic hesitant fuzzy rough entropy and information entropy is constructed base on this. The concepts of interval-valued intuitionistic hesitant fuzzy granular structure distance are proposed, a new partial order relation in interval-valued Intu- itionistic hesitant fuzzy granular structures are defined base on the distance, and the partial order of inter- val-valued Intuitionistic hesitant fuzzy rough entropy and information entropy is explored. In addition, an example is provided to show the validity of the related concepts and theorems.
出处
《青海师范大学学报(自然科学版)》
2017年第3期1-6,共6页
Journal of Qinghai Normal University(Natural Science Edition)
基金
国家自然科学基金项目(61261047)
国家自然科学基金项目(61363080)
青海省自然基金项目(2014-Z-910)
青海省自然基金项目(2016-ZJ-920Q)
教育部春晖计划项目(Z2015051)
关键词
区间直觉犹豫模糊粒度结构
区间直觉犹豫模糊粒度结构距离
区间直觉犹豫模糊粗糙熵
区间直觉犹豫模糊信息熵
interval-valued intuitionistic hesitant fuzzy granular structure
interval-valued intuitionistichesitant fuzzy granular structure distance
interval-valued intuitionistic hesitant fuzzy rough entropy
interval-valued intuitionistic hesitant fuzzy information entropy