期刊文献+

高等代数中两道习题的问题变式

The Variation of Problems in Two Exercises of Advanced Algebra
下载PDF
导出
摘要 通过对高等代数考研题中两组变式题组的变式分析以及问题解决的过程,可以看到:在进行考研复习的解题训练时,学生首先应立足于课本,熟练掌握课本习题提供的解题思想、方法和结论.其次应多关注题题之间的关系,从中抽取出问题表面特征以外的结构特征,建立起题目的数学结构.再次应学会对问题进行多层次变式分析(或构造),对问题解决过程及问题本身的结构有清晰的认识,从而积累问题解决的经验,提高解决问题的能力. By analyzing two groups of variant exercises of advanced algebra in the review for postgraduate entrance examination and their solving process,it can be seen that in preparation for the examination,students can improve their ability to solve problems by accumulating the problem-solving experience in three ways.First,students should base their training on the textbook and master the idea,method and conclusion that textbooks provide in solving the given exercises.Second,students should pay more attention to the relations between exercises and extract the structural characteristics besides their superficial ones in order to establish the mathematical model of the problem.Third,students should learn to analyze problems and their variants at different levels.Only with a clear understanding of the mathematical structure of problems and their solving process can students improve their ability to solve problems.
作者 余波
出处 《玉溪师范学院学报》 2016年第12期50-54,共5页 Journal of Yuxi Normal University
关键词 高等代数 考研复习 问题变式 advanced Algebra postgraduate review variation of problems
  • 相关文献

参考文献5

  • 1孙旭花,黄毅英,林智中,张奠宙.问题变式:结构与功能的统一[J].课程.教材.教法,2006,26(5):38-42. 被引量:33
  • 2北京大学数学系几何与代数教研室前代数小组编,王萼芳,石生明修订..高等代数 第3版[M].北京:高等教育出版社,2003:432.
  • 3徐仲 ... ..高等代数考研教案[M],2006.
  • 4研究生入学考试试题研究组主编..研究生入学考试考点解析与真题详解 高等代数[M].北京:电子工业出版社,2008:430.
  • 5鲍建生,黄荣金,易凌峰,顾泠沅.变式教学研究[J].数学教学,2003(1):11-12. 被引量:214

二级参考文献13

  • 1R R Skemp. The Psychology of Learning Mathematics[C]. Middlesex, England: Penguin Books, 1986. 被引量:1
  • 2M K Stein, S Lane. Instructional Tasks and the Development of Student Capacity to Think and Reason:An Analysis of the Relationship between Teaching and Learning in a Reform Mathematics Project [J].Educational Research and Evaluation, 1996, (2). 被引量:1
  • 3S Blessing, B Ross. Content Effects in Problem Categorization and Problem Solving [J]. Journal of Experimental Psychology : Learning, Memory,and Cognition, 1996, (22). 被引量:1
  • 4W Doyle. Work in Mathematics Classes. The Context of Students' Thinking during Instruction [J].Educational Psychologist, 1988, (23). 被引量:1
  • 5P Halmos. The Heart of Mathematics [J]. American Mathematical Monthly, 1980, (87). 被引量:1
  • 6L R Novick, K J Holyoak. Mathematical Problem Solving by Analogy [J]. Journal of Experimental Psychology : Learning, Memory, and Cognition, 1991. 被引量:1
  • 7A Sfard. On the Dual Nature of Mathematics Conception: Reflections on Processes and Objects as Different Sides of the Same Coin [J]. Educational Studies in Mathematics, 1991, (1). 被引量:1
  • 8M K Stein, M S Smith. Mathematical Tasks as A Framework for Reflection:From Research to Practice[J]. Mathematics Teaching in the Middle School,1998, (3). 被引量:1
  • 9Sun Xu Hua, Wong Ngai Ying, Lam Chi Chung.Bianshi Problem as the Bridge from "Entering the Way" to "Transcending the Way": The Cultural Characteristic of Bianshi Problem in Chinese Math Education [J]. Journal of the Korea Society of Mathematical Education Series D: Research in Mathematical Education, 2005, (2). 被引量:1
  • 10J Sweller. Cognitive Load during Problem-solving:Effect on Learning [J]. Cognitive Science, 1988,(2). 被引量:1

共引文献238

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部