期刊文献+

深度图像下基于头部多特征的人数统计算法

A people counting algorithm based on multi-feature of head region in depth images
下载PDF
导出
摘要 在现实生活中,因人流量过大而引发的安全事故不胜枚举.为了防止此类事故的发生,可通过视频监控的方式统计人数,及时对行人进行限流和分流.提出一种有效的人数统计算法.该算法采用深度摄像机作为视频采集源,通过分析和提取深度图像下头部的4个特征,实现行人头部检测,并依靠Kalman滤波技术实现对头部目标的跟踪,进而达到人数统计的目的.该算法对行人的不同发型具有一定适应性,同时对轻微遮挡和多人环境下的头部检测均有良好效果.该算法人数统计平均准确率达到88.6%. In daily life,a great number of security accidents are caused by the excessive flow of people. In order to prevent the occurrence of such accidents,we propose an efficient algorithm to count the number of people by using video monitors and limit the flow of people in time. The algorithm uses the depth camera as a video capture device and realizes the detection of people's heads by analyzing and extracting the four features of heads in depth image.The method uses Kalman filter technology to track the head and achieves the purpose of counting statistics. The proposed algorithm can effectively solve the head detection problem of complex scenes,such as hairstyle diversity and head part-occlusion. The average accuracy of the proposed algorithm reaches about 88. 6%.
出处 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2017年第6期584-590,共7页 Journal of Shenzhen University(Science and Engineering)
基金 广东省自然科学基金资助项目(2015A030310172) 深圳市科技计划资助项目(JCYJ20170302145623566 JCYJ20160331185006518)~~
关键词 数字图像处理 深度图像 区域生长 KALMAN滤波 多特征 人数统计 digital image processing depth image region growing Kalman filter multi-feature people counting
  • 相关文献

参考文献2

二级参考文献15

  • 1叶亮.一种基于变形模板匹配的人脸检测方法[J].计算机工程,2004,30(11):115-117. 被引量:4
  • 2Krumm J, Kirk G. Video occupant detection for airbag deployment. Application of compoter vision[C]//WACV'98[S.l.]:[s.n.],1998. 被引量:1
  • 3Devy M, Giralt A, Marin-Hemandez A. detection and classification of passenger seat occupation using stereovision[C]//Proc. IEEE Intelligent Vehicles symposium.[S.l.]:[s.n.]:2000. 被引量:1
  • 4Mckenna S J, Gong S, Raja Y, modelling Facial Color and identity with Gaussian Mixtures[J]. Pattern Recogintion, 1998, 31 (12):1883 - 1892. 被引量:1
  • 5Rowley H A, Baluja S, Kanade T. Neural Network-Based Face Detection[J].IEEE Trans. Pattern Analysis and Machine intelligence, 1998,20(1) :23- 38. 被引量:1
  • 6Yow K C, Cipolla R. Feature-Based Human Face Detection[J]. Image and Vision Computing, 1997, 15(9):713 - 735. 被引量:1
  • 7Maio D, Maltoni D. Real-Time Face Location on Gray- Scale Static Image [J]. Pattern Recongnition, 2000, 33 (9) : 1525- 1539. 被引量:1
  • 8Lew M S, Huijsmans N. Information Theory and Face Detection [C]//Proc. int'l Conf. Pattern Recognition. [S.l.] : [s.n. ] ,1996. 被引量:1
  • 9Clark F, Olson. Adaptive-scale filtering and feature detection using range data [J]. IEEE Transactions of Pattern Analysis and Machine Intelligence, 2000, 22 (9) : 983 - 991. 被引量:1
  • 10Birchfield. Elliptical head tracking using intensity gradients and color histograms[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S.l.]:[s.n.], 1998:232-237. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部