期刊文献+

从阴影恢复形状的径向基函数反射模型研究 被引量:2

Radial basis function reflective model of shape from shading
原文传递
导出
摘要 目的为解决传统阴影恢复形状(SFS)算法由于光源方向初始信息估计不准确,恢复的物体表面过于光滑,3维表面形状误差较大等问题,建立了基于径向基函数神经网络的反射模型,并对传统的神经网络进行了改进。方法建立的基于径向基函数(SFS)神经网络的从阴影恢复形状反射模型代替了传统方法中采用的理想朗伯体表面反射模型。该模型利用径向基函数优秀的局部映射和函数逼近能力来处理SFS问题,通过网络训练过程中的权值代替物体所受到的初始光源信息,解决了传统算法在进行计算时,必须已知光源参数的限制。在该网络模型中添加自适应学习率算法,加速网络的收敛和训练速度。结果针对SFS问题处理的两幅经典合成图像以及两幅实际图像进行了实验,实验结果表明,改进后的算法在3维视觉效果和3维形状信息的恢复方面都明显优于传统算法。归一化后的3维高度误差结果相比传统算法缩小了60%以上,而且同时适用合成图像和实际图像;自适应学习率的加入,使得网络的训练速度大大加快,对一幅128×128像素的图像,运算速度提升了50%。结论本文针对SFS问题建立了基于RBF神经网络的从阴影恢复形状反射模型,利用网络模型中的参数代替SFS问题中的初始光源信息,通过最优化方法求解SFS问题。并针对传统的神经网络固定学习率造成网络收敛速度慢,容易陷入局部极小值的问题,加入了自适应学习率算法。实验结果表明,改进后的算法在处理该SFS问题时表现了优秀的性能,适用范围更广,收敛速度更快。 Objective The traditional shape from shading (SFS) algorithms inaccurately estimate the initial information of the original direction of the light source,thereby causing the reconstructed surface to be smooth in several objects with a rough surface.The ideal reflection model,i.e.,Lambertian surface,is too simple to meet the conditions in real applications.Therefore,the reconstructed shape of the object presents serious errors.In this study,a reflection model based on the radial basis function (RBF) neural network is established to solve this problem.Moreover,the fixed learning rate in the traditional algorithm slows down the training process.Thus,the neural network is improved in the aspect of learning rate to accelerate the training speed and avoid being trapped in a local minimum at the same time.Method The reflection model,which is based on the RBF,replaces the ideal Lambertian reflection model used in the traditional SFS algorithms.The excellent local mapping and function approximation capabilities of the RBF are suitable for dealing with the classic SFS problems.The original information of the light source is replaced by the weight in the training process of the RBF neural network.Then,the SFS problem is transformed to obtain the optimal solution for its energy equations.In this manner,the limitation that the direction of the light source parameters must be known in the beginning is removed.Only one single image is needed in the improved algorithm to restore the 3D surface of the target object.However,the fixed learning rate in the traditional neural network easily causes the local minimum when the parameters are inappropriate in the beginning and slows down the training speed in practice.Therefore,the adaptive learning rate algorithm is added to the network to accelerate the convergence and training speeds.The learning rate can be automatically adjusted from the iterations.Result In the experiments,two synthetic images for the classic SFS problems are Vase and Mozart and two real images are Map and
出处 《中国图象图形学报》 CSCD 北大核心 2017年第11期1565-1573,共9页 Journal of Image and Graphics
关键词 从阴影恢复形状 径向基函数 神经网络 反射模型 3维重建 shape from shading radial basis function neutral network reflection model 3D-reconstruction
  • 相关文献

参考文献5

二级参考文献77

  • 1叶健,葛临东,吴月娴.一种优化的RBF神经网络在调制识别中的应用[J].自动化学报,2007,33(6):652-654. 被引量:32
  • 2Chen S, Wang X X, Brown D J. Sparse incremental regression modeling using correlation criterion with boosting search. IEEE Signal Processing Letters, 2005, 12(3): 198-201. 被引量:1
  • 3Chen S, Wolfgang A, Harris C J, Hanzo L. Symmetric RBF classifier for nonlinear detection in multiple-antenna-aided systems. IEEE Transactions on Neural Networks, 2008, 19(5): 737-745. 被引量:1
  • 4Conzalez J, Rojas I, Ortega J, Pomares H, Fernandez F J, Diaz A F. Multi-objective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks, 2003, 14(6): 1478-1495. 被引量:1
  • 5Leung F H F, Lam H K, Ling S H, Tam P K S. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Transactions on Neural Networks, 2003, 14(1): 79-88. 被引量:1
  • 6Bors A G, Pitas I. Median radial basis function neural network. IEEE Transactions on Neural Networks, 1996, 7(6): 1351-1364. 被引量:1
  • 7Yin H, Allinson N M. Self-organizing mixture networks for probability density estimation. IEEE Transactions on Neural Networks, 2001, 12(2): 405-411. 被引量:1
  • 8Esposito A, Marinaro M, Oricchio D, Scarpetta S. Approximation of continuous and discontinuous mappings by a growing neural RBF-based algorithm. Neural Networks, 2000, 13(6): 651-665. 被引量:1
  • 9Fu X J, Wang L P. Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003, 33(3): 399-409. 被引量:1
  • 10Lu Y W, Sundararajan N, Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks. Neural Computation, 1997, 9(2): 461-478. 被引量:1

共引文献168

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部