摘要
Exploring structural characteristics implied in initialdecision making information is an important issue in the process of aggregation. In this paper we provide a new family of aggregation operator called density weighted averaging operator(abbreviated as DWA operator), which carries out the aggregation by classification. In this case, not only the hidden structural characteristics can be identified, some commonly known aggregation operators can also be incorporated into the function of the DWA operator. We further discuss the basic properties of this new operator, such as commutativity, idempotency, boundedness and monotonicity withcertain condition. Afterwards, two important issues related to the DWA operator are investigated, including the arguments partition and the determination of density weights. At last a numerical example regarding performance evaluation of employees is developed to illustrate the using of this new operator.
Exploring structural characteristics implied in initialdecision making information is an important issue in the process of aggregation. In this paper we provide a new family of aggregation operator called density weighted averaging operator(abbreviated as DWA operator), which carries out the aggregation by classification. In this case, not only the hidden structural characteristics can be identified, some commonly known aggregation operators can also be incorporated into the function of the DWA operator. We further discuss the basic properties of this new operator, such as commutativity, idempotency, boundedness and monotonicity withcertain condition. Afterwards, two important issues related to the DWA operator are investigated, including the arguments partition and the determination of density weights. At last a numerical example regarding performance evaluation of employees is developed to illustrate the using of this new operator.
基金
Supported by the National Natural Science Foundation of China(71671031,71701040)