期刊文献+

广义鞅变换算子在Garsia型鞅空间上的Φ-不等式

The Φ-inequalities for Operator-valued Martingale Transforms in Garsia Space
下载PDF
导出
摘要 研究由算子值乘子序列所生成的广义鞅变换算子在向量值Garsia型鞅空间上的一系列Φ-不等式。作为应用,给出了Garsia型鞅空间中极大算子与p阶均方算子之间的Φ-不等式的证明并加以推广,所得结论与Banach空间的几何性质有着密切联系. A series ofΦ-inequalities for operator-valued martingale transforms in Garsia space are investigated.As an application,theΦ-inequalities between maximal operator and the pvariation of Banach-space-valued martingales are proved and extended.By the results obtained here,the geometric properties of Banach spaces are exposed.
出处 《汉江师范学院学报》 2017年第3期1-7,共7页 Journal of Hanjiang Normal University
基金 汉江师范学院校级科研项目(项目编号:2016C09)
关键词 鞅变换 Garsia型空间 Φ-不等式 一致光滑性(一致凸性) Martingale transforms Garsia space Φ-inequalities uniformly smooth(convex)
  • 相关文献

参考文献4

二级参考文献32

  • 1LIU PeiDe,HOU YouLiang & WANG MaoFa School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China.Weak Orlicz space and its applications to the martingale theory[J].Science China Mathematics,2010,53(4):905-916. 被引量:23
  • 2Burkholder D L. Martingale transforms[J]. Ann of Math, 1966, 6(37): 1494-1504. 被引量:1
  • 3Garsia A M. Martingale inequalities[M], In: Seminar Notes on Recent Progress. In: Mathematics Lecture Notes Series, W A Benjamin, Inc., Reading. 1973. 被引量:1
  • 4Weisz F. Hardy spaces of predictable martingales[J]. Analysis Mathematica, 1994, 20(3): 225-233. 被引量:1
  • 5CHAO K A, LONG R L. Martingale transforms and Hardy spacesJ]. Probability Theory and Related Fields, 1992, 91: 399-404. 被引量:1
  • 6LONG R L. Martingale Spaces and Inequalities[M]. Beijing, Peking University Press and Vieweg Pub- lishing, Braunschweig, Wiesbaden, 1993. 被引量:1
  • 7Weisz F. Martingale Hardy Spaces and Their Applications in Fourier Analysis[M]. In: Lecture Notes in Mathematics, vol. 1568. Springer, Berlin, 1994. 被引量:1
  • 8Ishak S, Mogyorddi J. On the-spaces and the generalization of Herz's and Fefferman's inequality I[J]. Studia Scientiarum Mathematicarum Hungarica, 1982, 17: 229-234. 被引量:1
  • 9MENG W W, YU L. Martingale transform between 1 and v of martingale spaces[J]. Statistics and Probability Letters, 2009, 79(22): 2328-2333. 被引量:1
  • 10Burkholder D L. Distribution function inequalities for martingMes. The Annals of Probability, 1973, 1(1): 19-42. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部