摘要
采用CFD方法对国内首台MW级超临界压缩空气储能试验台所采用的四级再热向心涡轮的变几何特性进行了整体数值计算与分析。结果表明,在计算范围内:第三级导叶开度增大时,该级膨胀比变化最大,其次是第二级膨胀比,且第二、三级等熵效率变化较大;随着第一、三级导叶开度增大,系统的各级膨胀比趋向于均匀分布,质量流量、总功率、平均等熵效率及比功等参数均增加;当系统变负荷运行时,可以采用第一、三级导叶开度联调的方式,从而扩大多级涡轮流量和总出功的调节范围,同时,采用变第一级导叶开度来实现大范围调节,而采用变第三级导叶开度实现性能参数的微调;当第一级入口总压低于设计值时,调节第一、三级导叶开度为80%时系统平均等熵效率、总功率提高,可实现系统在较宽变工况范围内高效运行。
Variable geometrical characteristics of the four stage radial inflow turbines and heat exchangers are analysed using the computational fluid dynamics(CFD) method.The China’s first MW scale supercritical compressed air energy storage test system is used as an example in the analyses.The results show that an increase in the third stage guide vane opening gives the greatest change in the expansion ratio of the third stage,followed by that of second stage,and the isentropic efficiencies of the two stages vary greatly.When the guide vane opening of first and third stages increases,the expansion ratio tends to be evenly distributed across each stage,and the mass flow rate,the total power,the average isentropic efficiency and the specific work are all seen to increase.When the system is run with a changing load,the joint regulation of the guide vane opening of the first and third stages can increase the range of flow rate and the total power of multistage turbine.In the same time,a wide range of adjustment can be achieved by adjusting the opening of the first stage guide vane,whereas the fine-tuning can be achieved by changing the third stage guide vane opening.When the total pressure of the first stage is lower than the design value,the system can operate efficiently in a wide range of operating conditions with improved isentropic efficiency and total power occurring at 80% first and third guide vane opening.
出处
《储能科学与技术》
CAS
CSCD
2017年第6期1286-1294,共9页
Energy Storage Science and Technology
基金
国家自然科学基金项目(51522605
51406206)
国家重点基础研究发展计划(2015CB251302)
中国科学院前沿科学重点研究项目(QYZDB-SSW-JSC023)
关键词
可调导叶
变几何
变工况
多级向心涡轮
数值模拟
adjustable guide vane
variable geometry
variable condition
multistage radial inflow turbine
numerical simulation