摘要
The present study evaluates the potential of a bio-inspired pulsation damper in a vane pump used in mobile hydraulic ap- plications. Pressure pulsations caused by such positive displacement pumps can lead to malfunctions and noise in a hydraulic system. A common measure to reduce pressure pulsations is the integration of pressure pulsation dampers downstream of the pump. This type of damping measure can also be found in biology as e.g. in the human blood circulatory system. Such working principles found in living organisms offer a high potential for a biomimetic transfer into technical applications. The newly developed bio-inspired damper consists of cellular rubbers with non-linear viscoelastic material properties. In order to evaluate the new damping method, pressure pulsations were measured at two different back pressures and at a wide engine speed range of the vane pump. For further assessment, different setups, varying the stiffness of the cellular rubber materials and the damper volume, were tested. Within the tested back pressures, the pressure pulsations could be reduced by up to 40%. The developed integrated pulsation damper offers a high potential to dampen pressure pulsations of positive displacement pumps used in mobile hydraulic applications ooeratin~ below 10 bar.
The present study evaluates the potential of a bio-inspired pulsation damper in a vane pump used in mobile hydraulic ap- plications. Pressure pulsations caused by such positive displacement pumps can lead to malfunctions and noise in a hydraulic system. A common measure to reduce pressure pulsations is the integration of pressure pulsation dampers downstream of the pump. This type of damping measure can also be found in biology as e.g. in the human blood circulatory system. Such working principles found in living organisms offer a high potential for a biomimetic transfer into technical applications. The newly developed bio-inspired damper consists of cellular rubbers with non-linear viscoelastic material properties. In order to evaluate the new damping method, pressure pulsations were measured at two different back pressures and at a wide engine speed range of the vane pump. For further assessment, different setups, varying the stiffness of the cellular rubber materials and the damper volume, were tested. Within the tested back pressures, the pressure pulsations could be reduced by up to 40%. The developed integrated pulsation damper offers a high potential to dampen pressure pulsations of positive displacement pumps used in mobile hydraulic applications ooeratin~ below 10 bar.