期刊文献+

Spectral square moments of a resonance sum for Maass forms 被引量:2

Spectral square moments of a resonance sum for Maass forms
原文传递
导出
摘要 Let f be a Maass cusp form for Г0(N) with Fourier coefficients 1 k2. λf(n) and Laplace eigenvalue 1/4 +k2 For real α≠0 and β 〉 0, consider the sum Sx(f; α,β) = ∑n λf(n)e(αnβ)φ(n/X), where φ is a smooth function of compact support. We prove bounds for the second spectral moment of Sx (f;α, β), with the eigenvalue tending towards infinity. When the eigenvalue is sufficiently large, we obtain an average bound for this sum in terms of X. This implies that if f has its eigenvalue beyond X1/2+ε, the standard resonance main term for Sx(f; ±2√q 1/2), q ∈Z+, cannot appear in general. The method is adopted from proofs of subconvexity bounds for Rankin-Selberg L-functions for GL(2) × GL(2). It contains in particular a proof of an asymptotic expansion of a well-known oscillatory integral with an enlarged range of Kε≤ L≤ K1-ε. The same bounds can be proved in a similar way for holomorphie cusp forms. Let f be a Maass cusp form for Г0(N) with Fourier coefficients 1 k2. λf(n) and Laplace eigenvalue 1/4 +k2 For real α≠0 and β 〉 0, consider the sum Sx(f; α,β) = ∑n λf(n)e(αnβ)φ(n/X), where φ is a smooth function of compact support. We prove bounds for the second spectral moment of Sx (f;α, β), with the eigenvalue tending towards infinity. When the eigenvalue is sufficiently large, we obtain an average bound for this sum in terms of X. This implies that if f has its eigenvalue beyond X1/2+ε, the standard resonance main term for Sx(f; ±2√q 1/2), q ∈Z+, cannot appear in general. The method is adopted from proofs of subconvexity bounds for Rankin-Selberg L-functions for GL(2) × GL(2). It contains in particular a proof of an asymptotic expansion of a well-known oscillatory integral with an enlarged range of Kε≤ L≤ K1-ε. The same bounds can be proved in a similar way for holomorphie cusp forms.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第5期1183-1200,共18页 中国高等学校学术文摘·数学(英文)
关键词 Cusp form Maass form Fourier coefficient of cusp form Kuznetsovtrace formula resonance sum first derivative test weighted stationary phase Cusp form, Maass form, Fourier coefficient of cusp form, Kuznetsovtrace formula, resonance sum, first derivative test, weighted stationary phase
  • 相关文献

参考文献4

二级参考文献19

  • 1REN XiuMin1,& YE YangBo1,2 1School of Mathematics,Shandong University,Jinan 250100,China,2Department of Mathematics,The University of Iowa,Iowa City,Iowa 52242-1419,USA.Resonance between automorphic forms and exponential functions[J].Science China Mathematics,2010,53(9):2463-2472. 被引量:9
  • 2Jianya Liu,Yonghui Wang,Yangbo Ye.A proof of Selberg’s orthogonality for automorphic L-functions[J]. manuscripta mathematica . 2005 (2) 被引量:1
  • 3Stephen D. Miller,Wilfried Schmid.The Highly Oscillatory Behavior of Automorphic Distributions for SL(2)[J]. Letters in Mathematical Physics . 2004 (1) 被引量:1
  • 4Jianya Liu,Yangbo Ye.Subconvexity for Rankin-Selberg L-Functions of Maass Forms[J]. Geometrical and Functional Analysis GAFA . 2002 (6) 被引量:1
  • 5Henryk Iwaniec,Wenzhi Luo,Peter Sarnak.Low lying zeros of families of L-functions[J]. Publications Mathématiques de l’Institut des Hautes Scientifiques . 2000 (1) 被引量:1
  • 6James Lee Hafner.Some remarks on odd maass wave forms (and a correction to )[J]. Mathematische Zeitschrift . 1987 (1) 被引量:1
  • 7Hua L G.Introduction to Number Theory (with an appendix by Yuan Wang). . 1975 被引量:1
  • 8Kim H,Sarnak P.Appendix 2: Rened estimates towards the Ramanujan and Selberg conjectures. Journal of the American Mathematical Society . 2003 被引量:1
  • 9Sun Q F.On cusp form coefficients in nonlinear exponential sums. The Quarterly Journal of MaThematics Oxford . 被引量:1
  • 10Wu J,Ye Y B.Hypothesis H and the prime number theorem for automorphic representations. Functiones et Approx-imatio Commentarii Mathematici . 2007 被引量:1

共引文献9

同被引文献1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部